
 1 



 2 

Protocol for Remote Sensing Based 
Vegetation Change Detection in Canadian 
Arctic and Subarctic National Parks 
 
By Robert H. Fraser, Ian Olthof, Alice Deschamps, and Mélanie 
Carrière 
 
 
 
 
ParkSPACE Project 
 
Prepared by Funding from the Government Related Initiatives 
(GRIP) Program of the Canadian Space Agency  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Natural Resources Canada, Canada Centre for Remote Sensing 
 
Prepared for Parks Canada Agency, Ecological Integrity Branch 
 
Ottawa, 2012 



 3 

TABLE OF CONTENTS 

TABLE OF CONTENTS........................................................................................................................ 3 

1. BACKGROUND AND OBJECTIVES ......................................................................................... 4 

2. TARGET AUDIENCE...................................................................................................................... 10 

3. DATA REQUIREMENTS & SOURCES......................................................................................... 10 

(A) Satellite Data .................................................................................................................................. 10 
I. Data Sources................................................................................................................................... 10 
IV. Ordering and Procurement procedures for Landsat imagery .......................................................... 15 
V. Specifications for Landsat imagery ................................................................................................ 16 

(B) Field Data........................................................................................................................................ 17 

4. SOFTWARE REQUIRED................................................................................................................ 19 

5. METHODS ....................................................................................................................................... 20 

(A) Image Pre-processing Methods ...................................................................................................... 21 
I. Import Raw Images into PCI........................................................................................................... 21 
II. Option - Create N-S Mosaics for Scenes Having Same Date and Path............................................. 27 
III. Convert Digital Numbers (DN) to Top of Atmosphere (TOA) Reflectance .................................... 30 
IV. Mask Cloud and Cloud Shadows .................................................................................................. 35 
V. Visualize the TOA reflectance time series...................................................................................... 42 
VI. Compute Vegetation Indices......................................................................................................... 43 
VII. Generate a Landsat Image Stack.................................................................................................. 44 

(B) Data analysis methods .................................................................................................................... 46 
I. Computing Long-Term Spectral Trends .......................................................................................... 46 
II. Summarizing Spectral Trend Results.............................................................................................. 48 
II. Calculating Sub-pixel Land Cover Fractions from Trends............................................................... 48 

(C) Validation ..................................................................................................................................... 100 

6. REFERENCES ..................................................................... ERROR! BOOKMARK NOT DEFINED.  
 

 



 4 

1. Background and Objectives 
 
A Changing Arctic 
 
There is growing consensus that climate change will have widespread impacts on Earth’s 
vegetation, especially at northern latitudes where models predict accelerated rates of 
change (ACIA 2005, Anisimov 2007, ICARP 2005).  This presents a difficult challenge 
for national park managers across the Canadian Arctic, who are responsible for 
maintaining or restoring ecological integrity (Parks Canada Agency, 2001).  For example, 
by the year 2050 it is predicted that all Arctic and Subarctic national parks will 
experience dramatic increases in mean summer (2.6–5.0 °C) and mean winter (4.3–8.2 
°C) temperatures, as well as significant but highly variable changes in winter and summer 
precipitation (Scott and Suffling, 2000).  Scott (2003) used vegetation scenario modelling 
to predict that at least half of Canada’s national parks will be situated in new biomes by 
2050 as result of climate change. Underscoring the potential magnitude of this biotic 
change, Lawler et al (2009) assessed the central Canadian Arctic as a global hotspot of 
species change in the Western Hemisphere, predicting an overturn of 70-80% in species 
composition over the next 100 years. 
 
There is ample evidence that northern ecosystems across North America are already 
undergoing important changes in regional climate, growing season length, permafrost 
temperature, soil moisture, and land cover (Hinzman et al. 2005).  Increased growth of 
woody shrubs and their expansion into graminoid tundra (Sturm et al 2001, Tape et al 
2006) and northward or upslope movements of tree line (Danby and Hik, 2007; 
MacDonald et al., 2008) are also becoming documented.  Analysis of coarse resolution, 
archival satellite imagery also supports the overall idea of an ongoing ‘greening of the 
arctic’ resulting from longer growing seasons and increased productivity (Zhou et al., 
2001; Goetz et al. 2005; Olthof et al. 2008; Pouliot et al. 2009).     
 
Canada’s Arctic is also undergoing change from natural resource development.  During 
the past decade, there has been a dramatic increase in resource extraction activity in 
Canada’s North: new diamond and mineral mines, extensive exploration for petroleum 
and metal deposits, and planning of new transportation networks, other supporting 
infrastructure, and the Mackenzie Gas Project (Fig 1).  It is estimated that Northern 
Canada contains one third to one half of the country’s remaining petroleum resources, 
while its diamond mining is now a $2 billion per year industry.  Although national parks 
are protected from resource extraction activities, it is recognized that mining, drilling, 
seismic surveying, and creation of linear features such as pipelines and roads can have 
long-lasting impacts to sensitive tundra vegetation, wildlife, and hydrology that extend 
far beyond their immediate physical footprint.  For example, caribou have been shown to 
avoid roads and other infrastructure by several kilometers, especially during calving.  
Linear features, such as roads and pipelines fragment animal habitats and can impede the 
movement of migratory and wide-ranging species.  Roads can produce hydrologic 
changes and alkaline dust deposition that may modify surrounding vegetation and create 
thermokarst features. 
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Figure 1 - Maps showing proposed northern infrastructure projects in NWT and Nunavut. 
 
 
 
Monitoring Ecological Integrity in Canada’s Arctic Parks   
 
Parks Canada is in the process of establishing ecological integrity (EI) monitoring across 
Arctic national parks to help manage them in the face of the changes described above.  
The information provided through the EI monitoring program will be used to prepare 
State of the Park (SOP) reports, in generating and revising mandatory management plans 
for individual parks, and in documenting the extent and impacts of climate variability and 
change on Canada’s northern environment. The SOP reports from individual parks are 
integrated in a national State of the Protected Heritage Areas (SOPHA) Report that the 
Parks Canada Agency is legally bound to submit to Parliament every two years.   
 
Comprehensive and well-designed park EI monitoring first requires accurate and cost-
effective baseline inventories of park terrestrial vegetation ecosystems (McLennan & 
Ponomarenko 2004).  Conducting inventory and monitoring across the 166 000 km2 
covered by Canada’s Arctic national parks is logistically difficult and expensive due to 
large park size and the remoteness of their locations. Satellite-based remote sensing 
therefore has great potential for this purpose, and if proven technically and operationally 
feasible, could make a large contribution to the sustainable management of Canada’s 
northern land resources.  A collaborative project involving CCRS, Parks Canada Agency, 
and Canadian Space Agency called ParksSPACE is developing and demonstrating a 
series of remote sensing based EI monitoring protocols related to land cover change, 
phenology, biomass, wetlands, and permafrost.  This protocol document describes a 
method designed for long-term monitoring of vegetation type and cover.  A separate 
paper describes a procedure developed for baseline ecosystem mapping.  Figure 2 
presents the overall data/information flow envisioned for the use of satellite data in PCA 
monitoring, reporting and management activities. 
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Figure 2. Main steps in the generation and use of satellite-based products for SOP 
reporting. 
 
 
Requirements for EO-Based Vegetation Monitoring in the Arctic   
 
The majority of satellite remote sensing studies investigating changes to northern 
vegetation have been conducted using archived, coarse resolution (1-8 km) NOAA-
AVHRR imagery, as summarized in Pouliot and others (2009).  Although these data have 
the advantage of providing frequent continental-scale coverage, their resolution permits 
only regional analysis of productivity trends.  Landsat imagery provides a means of 
analysing Arctic change over a similar 25-year time span, but at a 30-m resolution that is 
capable of resolving landscape-scale changes and identifying particular vegetation types 
being impacted (Silapaswan and others, 2001; Olthof and others, 2008).  The cost 
limitation for Landsat was removed in 2008 with the opening of the USGS Landsat 
archive, providing a source of 30 m imagery from 1984 to present that can be used for 
land surface change studies.  Landsat-5 and -7 continue to provide imagery in 2010, 
while the Landsat Data Continuity Mission scheduled for launch in 2012 will ensure a 
future source of no-cost data.   
 
Many climate-driven changes to arctic vegetation are expected to be gradual and subtle in 
comparison to disturbances addressed in remote sensing studies of forested environments 
(Cohen and Others, 2002; Fraser and others, 2009).  Changes in Arctic vegetation may 
include growth of vegetation to denser, higher biomass classes, such as low shrub to tall 
shrub (Stow et al., 2004), expansion of shrub cover (Tape and others, 2006; figure 3), or 
shifts in vegetation community composition, such as moss and lichen being outcompeted 
by shrub (Walker et al., 2006).  Fortunately, the foliar shrub component of tundra 
vegetation, the major change target of interest, exerts a strong influence on spectral 
reflectance (Stow and others, 1993; Riedel et al., 2005).   
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Figure 3 - Vegetation changes in Alaska occurring over 52 years (from Sturm et al., 
2001) 
 
A comprehensive land cover change detection approach for Arctic parks should also be 
able to identify rapid changes, which are less common in the Arctic compared to forested 
environments.  Rapid changes can result from the draining and filling of shallow thaw 
lakes, wildfire in open forest and tundra, thermokarst from warming permafrost, coastal 
erosion, insect-caused defoliation, modifications to habitat by wildlife (e.g. snow geese 
damage to coastal salt marshes), and vegetation removal related to infrastructure 
development, mining, or hydrocarbon exploration and extraction. 
 
A challenge for monitoring land cover change in the North using optical EO data is the 
reduced signal-to-noise ratio.  The radiometric signal resulting from vegetation change is 
expected to be weaker compared to that in forested environments because changes are 
generally less pronounced, more gradual, and spread over larger areas.  Change detection 
in the Arctic is also complicated by variation in the satellite signal produced by factors 
unrelated to directional vegetation change.  These include illumination effects and 
shadowing arising from steep solar angles and a frequently mountainous terrain, a short 
growing season with rapidly changing vegetation phenology, and atmospheric effects 
including haze and persistent cloud cover (Stow et al., 2004).  Large inter-annual 
differences in tundra vegetation growth (Epstein and others, 2004; Boelman and others, 
2005; Buus-Hinkler and others, 2006) due to climate variability could also render 
conventional two-date change detection results unrepresentative of longer-term trends. 
 
 
Change Detection Approach used in ParkSPACE   
 
These challenges for measuring Arctic vegetation change using medium resolution 
imagery can be partially addressed by employing more frequent satellite observations.  A 
recent development for Landsat-based change detection is the use of dense temporal 
stacks of imagery rather than image pairs for monitoring forest and rangeland dynamics 
(Kennedy and others, 2007; Goodwin and others, 2008; Röder and others, 2008; Huang 
and others, 2009; Vogelmann and others, 2009; Kennedy and others, 2010).  This 
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approach is based on analyzing the temporal trajectory of pixel-level spectral values and 
may involve identifying temporal signatures characteristic of specific change events 
(Kennedy and others, 2007; Goodwin and others, 2008), segmenting the spectral 
trajectory (Kennedy and others, 2010), or linear trend analysis (Röder and others, 2008).  
The use of image stacks for northern change detection should allow real trend signals to 
be more reliably discerned from the sources of inter-scene and inter-annual variability 
described above (figure 4).  From our experience, most northern areas will be covered by 
a reasonably clear-sky, growing season Landsat image every 1-3 years, making it 
possible to analyze a 25-year stack of imagery that includes 20 or more clear 
observations. 
 
A second strategy that could increase the ability to detect subtle, arctic vegetation 
changes is to map land cover as a continuous rather than categorical variable.  Olthof and 
Fraser (2007) compared three different methods (least squares inversion, linear 
regression, and regression trees) to map per-pixel land cover fractions from Landsat 
imagery over three northern locations in Canada.  They found that regression tree 
modeling was the best overall method, producing an average bias of less than 3%.  In 
another study (Selkowitz, 2010), fractional land cover classification of Landsat imagery 
based on regression trees was found to be effective for mapping regional baseline levels 
of shrub canopy cover in northern Alaska.  By contrast, a “hard” classification change 
approach that assigns single land cover labels will be sensitive only to strong surface 
changes occurring over an entire pixel. (figure 4). 
 
 

 
 
Figure 4 – Comparison of conventional two-date, categorical change approach (e.g. 
Fraser et al., 2009) with multi-date, fractional change approach proposed for Arctic 
parks. 
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This fractional mapping approach requires consideration of multiple spatial resolutions 
—from fine (1-4 m) for deriving training data to calibrate and test sub-pixel mapping 
algorithms, medium (20-30 m) for mapping vegetation fractions at near-annual intervals, 
to coarse (250 m-1 km) for ensuring that image acquisitions are not biased in terms of 
plant phenology.  With coarser resolution, both a greater extent of coverage and 
frequency of repeat are possible.  For example only a small sample of each park will be 
mapped at 1-4 m for one time period, while it will be possible to continuously monitor 
over the entire north using coarse resolution data (refer to ParkSPACE work package 1.2 
“Plant growth and seasonality changes”). 
 
Considering that the vegetation fraction change method requires field measurements and 
high resolution satellite imagery, this protocol proposes a flexible, graded approach for 
deriving EI measures from multitemporal EO data (figure 5).  A range of increasingly 
sophisticated change products can be generated according to the level of reference data 
that are either available or can be collected for a particular study area.  In the absence of 
any reference information, vegetation index trends can be derived and interpreted to 
provide an integrated measure of greenness changes through time or indications of 
disturbance such as coastline erosion.  If more detailed field measurements and imagery 
are available, the trends can be expressed in terms of quantitative change in land cover 
fractional cover. 
 

 
 
Figure 5 - A Flexible, Graded Approach for Producing EI Measure from Remote Sensing 
Based on Availability of Reference Data 
 
To further increase the confidence of observed trends and EI measures derived from 
them, change results can be analyzed only for cover types or ecosystems where (a) 
changes are especially predicted to occur due to climate change and (b) where sources of 
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signal noise are reduced (e.g. away from steep, northerly facing slopes and highly 
reflective bare surfaces).   One target that potentially meets both criteria is mesic, shrub-
dominated ecosystems lying on lower hill slopes or valley bottoms (Tape et al., 2006).  
These can be identified from baseline ecosystem or vegetation maps. 
 

2. Target Audience 
This protocol is targeted towards a geomatics analyst at Parks Canada or other agency, 
who wishes to apply remote sensing based change detection for monitoring long-term 
vegetation and land cover change at a regional (~ 10,000 km2) scale in arctic and sub-
arctic environments.  It assumes an intermediate level knowledge of optical remote 
sensing theory and techniques and some proficiency with PCI Geomatica and ESRI 
software.  This document should also be useful for park ecologists or resource managers 
to understand if the methods and resulting products could be useful for application to 
their own region of responsibility.  
 

3. Data Requirements & Sources 

(A) Satellite Data 

I. Data Sources 
 
A major expense for most EO-based projects is satellite imagery.  The Landsat TM and 
ETM+ sensors provide an ideal trade-off between resolution (30-m), areal coverage (180 
km swath), and revisited frequency (16 days) for regional-scale mapping and change 
detection applications.  In 2009, the USGS opened its full Landsat archive to users at no 
charge, providing a source of 30-m imagery from 1984 to present that can be used for 
historical land surface change analysis.  Landsat 5 and 7 continue to provide imagery 
today, while the Landsat Data Continuity Mission scheduled for launch in 2013 will 
ensure a future source of no-cost data.   
 
II. Selection of Landsat Satellite Imagery 
 
1. First identify the 2-3 World Referencing System (WRS-2) frames falling along the 

same row that provide the greatest level of coverage for a given park (figures 6-7).  
The use of overlapping frames will provide the densest possible sample of 
observations for a given area.  A shapefile (ALL_SCENES.shp) containing the WRS 
frames in LCC projection is included in the \Ancillary directory.   
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Figure 6 - WRS frames 67/11 and 68/11 highlighted in blue below each cover  
most all of Ivvavik National Park. 

 

 
 
Figure 7 – Example Landsat images from WRS frame shown in figure 6. 
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2. Search the Landsat archives at USGS Glovis http://glovis.usgs.gov/  (see section iii 

below) and optionally at CCRS’ CEOCat3. 
http://ceocat.ccrs.nrcan.gc.ca/portal/index.html from 1984-present.  Include all 
Landat5 TM and Landsat7 ETM+ images.  Note that Landsat7 ETM+ suffered a scan 
line corrector (SLC) failure in May 2003.  As a result, about 25% of the data in all 
scenes acquired since then are missing.  These gaps appear as alternating wedges that 
increase in size from the center to the edge of a scene.   However, the remaining 75% 
of the data are still very usable for this application, as the missing gaps can simply be 
treated in the same manner as clouds.  For more information see 
http://landsat.usgs.gov/products_slcoffbackground.php  

3. Use 30-40% cloud cover as threshold for searching scenes.  Assess any available 
browse images for cloud/haze over study area, as the cloud cover estimates are often 
unreliable.  Note that higher cloud cover is permitted compared to a typical Landsat 
mapping application because our goal is not to comprehensively map each date (e.g. 
AMUSE), but provide the highest number of clear-sky observation possible for each 
pixel. 

4. Create a list of all potentially usable growing season scenes (from approximately July 
10-Aug 30 depending on the park).  Save browse images and arrange them in a 
PowerPoint file to aid in the next step. 

 
Table 1 – Landsat TM/ETM+ Data Availability for Ivvavik NP (27 Scenes)  
USGS Glovis  http://glovis.usgs.gov/   
CCRS CEOCat3 – search L5 and L7 (purchase from MDA) 
http://ceocat.ccrs.nrcan.gc.ca/portal/index.html  
 
Path/Row 67/11 68/11 69/11 66/11 
Approx Park 
Coverage 

80%  95% 35% 40% 

Date 1 2009-08-12 
(24%, L5) 

  2009-08-21 
(12%, L5) 

Date 2  2008-08-24 
(23% over wat, L7 
SLC-off) 

  

Date 3 2007-08-23 
(0%, L5) 

2007-08-30 
(0%, L5) 

  

Date 4  2007-08-22 
(0%, L7 SLC-off) 

  

Date 5  2007-07-05 
(32%, L7 SLC-off) 

  

Date 6  2006-07-26 
(0% - but cloudy, L5) 

  

Date 7 2005-07-24 
(14%, L7 SLC-off) 

   

Date 8  2004-08-21 
(20%, L5) 

  

Date 9 2002-07-16 
(1%, L7) 

   

Date 10 2001-08-30 
(1%, L7) 

2001-08-21 
(67%, L7) 

  

Date 11  2000-08-02 
(21%, L7) 

  

Date 12   1999-07-14 
(0%, L5) 

 

Date 13  1998-07-20   
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(0%, L5) 

Date 14  1995-07-12 
(0%, L5) 

  

Date 15  1994-08-10 
(0%, L5) 

 1994-07-27 
(0%, L5) 

Date 16 1993-07-15 
(0%, L5) 

   

Date 17 1992-07-28 
(70%, L5) 

1992-08-20 
(0%, L5) 

 1992-08-06 
(10%, L5) 

Date 18 1990-08-08 
(15%, L5, no browse) 

   

Date 19 1986-07-12 
(0%, L5) 

1986-08-04 
(20%, L5) 

  

Date 20  1985-08-01 
(20%, L5) 

  

 
 
5. Refine the list of overlapping scenes by indentifying 20-30 that provide best near-

annual, peak growing season coverage of the park or study area.  In the case of 
Ivvavik, we selected the full set of 27 scenes in Table 1 (23 downloaded from USGS 
and 4 purchased from MDA). 

 
III. Phenology screening using coarse resolution NDVI 
 
A potential pitfall in analyzing multi-year Landsat scenes for northern trend detection is 
that acquisition dates may often not coincide with peak vegetation phenology, which 
typically occurs in late July to early August.  If the selection of scenes is not random 
about this peak (i.e. later years tend to be closer to or further away from the peak), this 
could create a bias and artificial trend in the time series.   
 
To avoid using scenes that deviate strongly from peak growing conditions, we can 
characterize annual phenology cycles using 1-km NDVI values from NOAA-AVHRR 
10-day composite data available for 1985-2008 (Latifovic et al, 2005).  To track 
phenology only over vegetated areas, green targets are selected that lie plus one standard 
deviation from the multi-year mean NDVI in the entire study area (figure 8).  By 
calculating the average 10-day NDVI phenology profile over these vegetated pixels, the 
NDVI value corresponding to each Landsat acquisition date can be compared to peak 
NDVI for that year (figure 9).  This technique can then be used to pre-screen candidate 
Landsat scenes or to ensure that a final set of scenes does not exhibit any temporal trend 
in deviation from peak-phenology.  For the tutorial dataset, when percent NDVI deviation 
from peak is regressed against year for these scenes, no significant (p<0.05) trend is 
observed, suggesting no phenology sampling bias. 
 
A spreadsheet containing 10-day summer AVHRR NDVI averaged over vegetation areas 
within each northern national park is contained in the /Ancillary directory. 
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Figure 8 – Green vegetation targets used for each northern park in extracting 1985-2009 
AVHRR-NDVI Profiles.  Target selection is based on +1 SD from multi-year mean 
peak NDVI calculated over each park. 
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Figure 9 – Comparison of average NDVI values for each Landsat acquisition date and 
peak NDVI values for corresponding year, averaged over green targets within Torngat 
Mountains National Park.  The inset shows the curve of average 10-day values for 1997. 
 

IV. Ordering and Procurement procedures for Landsat imagery 
 
Most available scenes can be identified and ordered at no-charge using the USGS Glovis 
search tool at http://glovis.usgs.gov/ (figure 10).  After specifying “L4-7 Combined” 
under “Collection” each WRS-2 Path/Row frame is searched separately, and desired 
scenes will be either downloadable immediately, or require some processing after which 
an e-mail notification is sent.  The tool is straightforward to use, and includes on-line 
help, so no further details are provided here. 
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Figure 10 – Screenshots from USGS Glovis web site 
 
Note that some scenes covering Canada are available only at the CCRS Landsat archive.  
These will have to be ordered and processed by MDA or other commercial data provider.   

V. Specifications for Landsat imagery 
 
Characteristics of Landsat Level 1T data with precision terrain correction provided by 
USGS through GLOVIS are summarized below (figure 11).  A sophisticated system for 
geocoding in the USGS LPGS processing system ensures that multi-date registration 
accuracy among GLOVIS scenes is excellent—12m at the 90% confidence level 
according to the Landsat Science Data Users Handbook.  Note that, in some cases, 
ground control points or elevation data necessary for L1T correction are not available and 
scenes are provided in L1G format.  L1G scenes use information collected by the sensor 
and spacecraft for geo-positioning and have a geometric accuracy of only within 250 m 
for areas of low relief.  In rare cases that the PRODUCT_TYPE field in the scene MTL 
file indicates that it is a “L1G” product, then further processing using ERDAS Autosync, 
the PCI auto-registration package, or image-to-image warping will be necessary to 
provide sufficient registration accuracy for change detection. 
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Figure 11 – Characteristics of L1T Landsat scenes available from GLOVIS. 
 
Data purchased from a Canadian provider using raw Landsat data from CCRS’ archive 
should specify Level 1G LGSOWG format for Landsat 5 imagery and Level 1G HDF 
format for Landsat 7 imagery to be compatible with the procedures in this protocol.  For 
an additional charge, terrain-corrected data may be ordered that has been orthorectified 
using a DEM and ground control points, but such scenes may still deviate from the 
GLOVIS imagery by 1-2 pixels and require further rectification. 
 
Since 2003, Landsat processing systems used by both the USGS and MDA have applied 
an updated radiometric calibration algorithm that anchors the definitive calibration record 
for Landsat-5 TM to the Landsat-7 ETM+ radiometric scale (Teillet et al., 2004; 
Chandler et al., 2009).  The result is that data from both sensors should be compatible and 
not require any cross-calibration.  Note that calibration coefficients from the metadata 
provided with the image product should be used rather than coefficients from the 
literature or the web. 

(B) Field Data 
 
As indicated in figure 5x above, this protocol is designed to be flexible so that a range of 
change products can be generated depending on the level of field data that is either 
available or can be collected.  Three scenarios are described below.   

I. No Field Data 
 
In the absence of field data, the methods for tracking trends in the Tasseled Cap and 
NDVI vegetation indices can still be applied and their physical meaning interpreted 
(section 5.B.I).   
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II. Vegetation point surveys  
 
If vegetation point surveys are available, they can be used to generate a high-resolution 
land cover classification to apply the Landsat fractional change method. This involves 
clustering the imagery into about 50 classes, then pre-selecting accessible field sites from 
each class that are homogeneous at a 3-by-3 pixel (90-by-90m) scale.  At each site, 
record GPS location, land cover label, major vegetation types, and take digital photos in 
four cardinal directions and one downward.  Alternatively, if large-scale aerial photos are 
available across the study area, these can be used to label the high resolution image 
clusters. 

III. Vegetation plot surveys  
 
If vegetation composition from 1m2 quadrat plots is available or can be collected, then a 
high-resolution, fractional land cover product can be generated for applying the Landsat 
fractional change method.  This may provide a more desirable input for training the 
fractional algorithm compared to using a ‘hard’ high-resolution classification described 
above, since even at 1-4 m resolution, vegetation classes are normally mixed in arctic 
tundra. 
 
When plot data are collected, fractional land cover of basic land cover and vegetation 
growth forms (e.g. shrub, lichen, moss, bare, water) within 1m2 quadrats can be 
determined visually based on agreement among several observers.  Measurement should 
be collected from five quadrats at each site on a repeating pattern contained within the 
centre high resolution pixel.  In addition, downward-looking photographs should be taken 
of each quadrat as well as upward-looking hemispherical photographs (figure 12) when 
tall vegetation is present.  Finally, the average maximum vegetation height should be 
recorded for each site.  Note that fractional cover composition of the quadrats can also be 
estimated after field work by viewing the downward photos on a large monitor.   
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Figure 12 - Photographs of vegetation within quadrats at pre-selected homogeneous 
12m by 12m site:  a) Downward-looking; b) Upward-looking hemispherical      

4. Software Required 
 
1. Geomatica software suite by PCI Geomatics (used for most of the processing).  
Version 9.x, if available, allows for the use of an efficient Landsat scene import and 
calibration programs developed by CCRS http://www.pcigeomatics.com   
2. ArcMap and Spatial Analyst software by ESRI (used to derive summary statistics and 
EI measures from the trend results) http://www.esri.com  
3. Cubist Regression Tree software by Rulequest Research (used to train and apply 
regression tree model for fractional land cover mapping) http://www.rulequest.com  
4. ERDAS – optional in order to use the NLCD sampling and conversion tool for Cubist.   
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5. Methods 
 
 

 
 
 
 
 
 
 
 
 

 
Figure 13 – Area within Ivvavik National Park used to create demonstration datasets for 
this protocol document. 
 

Note – All steps described in this protocol, with the exception data importing (5-
a-i), are demonstrated using a reduced size Landsat database with 14 scenes 
and covering a 53 km by 57 km portion of Ivvavik National Park, in Yukon 
Territory (figure 13).  This will allow the methods to be demonstrated using a 
database size suitable for a tutorial or training course, while providing a range of 
variability in vegetation cover and terrain conditions encountered in Arctic parks. 
These .pix databases (figure 14) can be found in the /scenes directory of the 
tutorial dataset  
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Figure 14 – Files contained in reduced size tutorial database covering a portion of north-
central Ivvavik.  Two versions of each Landsat scene are provided: one containing only 
the six raw channels after importing from CD (*imported.pix) and one containing all 
channels after pre-processing steps are applied (*final.pix). 
 

(A) Image Pre-processing Methods 

I. Import Raw Images into PCI  

Most available imagery will be available for download from USGS GLOVIS, while some 
unique scene in the Canadian archive may be ordered on CD from MDA.  Below, we 
show examples of how to import Landsat data from each source, but do not include the 
raw data as part of the reduced-size tutorial dataset.   
 
For USGS images - Combine the individual TIF files from each scene into a .pix 
database with multiple channels. 
 
PCI Data Merge Wizard - In Focus:  Tools\Data Merge.  This starts the Data Merge 
Wizard that will combine the individual TIF channels (1,2,3,4,5,7) into a single .pix file 
and optionally reproject the imagery. 
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In the first step, select all the TIF channels to be combined (drag & drop files to put them 
in the desired order). 
 

 
 
In step 2, specify an output .pix file using the format below, then for the Geo-referencing 
Setup, Extents, and Resolution, select one of the geotif files to provide this information.  
Change Geo-referencing Setup to User-entered in order to change the Earth Model to D-
04 (NAD83).  Specify 1st Order Transform instead of Exact, as this will significantly 
speed up the processing without any discernable difference in the output. 
Note - if prompted to change resolution vs change lower right corner coordinate, select 
the second option. 
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In step 3 of the Wizard, ensure that the channels are output in the proper order below. 

 
 
 
 
For MDA (CCRS) images ordered on CD - Reading images from CD. 
 
 Level 1-G Landsat-5 images in LGSOWG format can be imported using the 

CDLANDC (via EASI) or CDSAT (via Algorithm Librarian in Focus). 
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 Level 1-G Landsat-7 images in HDF format can be imported using the 
CDLAND7 function available in EASI the Algorithm Librarian in Focus. 

 
 If you have ordered Precision Geocorrected Landsat5 or Landsat7 images from 

MDA note the following. 
 
Landsat5:   
If you are using Geomatica v10.3 with a PCI patch from Jan, 2010, you will be able to 
properly read the georeferencing information from MDA Landsat 5 Precision 
Geocorrected images using CDLANDC (via Easi) and CDSAT (via Algorithm 
Librarian).  Note that it does not assign the UTM Row information in the georeferencing, 
you should add this information since it can causes errors in the masking script.  The row 
letter can be added in Focus by selecting File Properties…Projection…More, then right-
clicking and saving .pix file changes.  A table showing UTM Rows for the “ROW” 
parameter is included below. 

 

 
 

If you are using any other version of PCI the georeferencing does not come in directly 
when you read the CD.  You will need to take the georeferencing information from the 
orbital segment and set it via ImageWorks/File utility or GEOSET.  Be aware that the 
prod.Report states the coordinates of the pixel corners and that the orbital segment states 
the coordinates of the pixel center.  PCI uses the pixel center coordinates for its image, 
therefore if you used the coordinates from the prod.Report you will need to do slight 
adjustments (+ - 15m) to get pixels of 30m x 30m. 
 
Landsat7: 
Can be imported via CDLAND7 (via EASI or Algorithm Librarian).  
The proper corner coordinates come in but for some reason the projection gets set to 
WGS84 instead of NAD83 as described in the the prod.Report.  This can be reset in 
ImageWorks/File utility. 
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X-Pace or Easi 
 
 

 
 
 
 
Algorithm Librarian 
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OrthoEngine 
 

 
 
Note: When reading file from CD take the time to transfer the MTL.L1G, MTL.L1T . H1 
or LEA_0x.001 files.   These contain the information required to run TOARETM and 
TOARTM.  The file extension will depend on which Landsat data format that you have. 



 27 

II. Option - Create N-S Mosaics for Scenes Having Same Date and 
Path 
 
This step can be used to combine images that are from the same WRS-2 Path and date.  
We applied this procedure for pre-processing scenes from Wapusk National Park only.   
 
a) start Ortho Engine Math Modeling Method= mosaic only 
b) set project according to your AOI 

 
 
c) Load the 2 image files (N+S):  Image Input 

 
 
 
d)   Define Mosaic Area:  PCI  uses your input files and give you the dimension of the 
file that needs to be created as an ouput.  This can be created in EASI using the CIMPRO 
command or simply by clicking the <Create Mosaic File> option at the bottom. 
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e) Manual Mosaicking: 

 
 
For the first image start by 
<select image to add> then 
<add image to mosaic>, this 
will transfer the image 
entirely since no cutlines are 
required.  For the second 
image you will select the 
second image using <select 
image to add> then you will 
need to create cutlines 
<collect cutlines>.  Then <add 
image to mosaic>, this will 
transfer the image within the 
cutline polygon to the output 
mosaic.   
**Use blendwidth=0 
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III. Convert Digital Numbers (DN) to Top of Atmosphere (TOA) 
Reflectance  

This step is required to place all scenes on a common radiometric reference—that being 
reflectance from the ground surface measured at the sensor or top of atmosphere (TOA).  
Note that this protocol does not include any procedure for atmospheric correction to 
derive surface reflectance.  Although theoretically desirable, an accurate surface 
reflectance product is difficult to produce for pre-2000 (i.e. pre-MODIS launch) scenes, 
since the required atmospheric data are highly coarse for this period.   

One potential option, used in AMUSE (Fraser et al., 2009), would be to atmospherically 
correct a recent Landsat scene then radiometrically normalize other scenes to it based on 
stable, no-change areas.  However, this procedure was not used in this protocol because 
scene normalization has the potential to remove real changes if they are occurring over a 
large portion of the scene.  For example, if shrubs were becoming consistently larger over 
an entire scene, this real signal could be attenuated by using a scene normalization 
procedure. 

Another option for atmospheric correction of Landsat imagery is the Dark Dense 
Vegetation (DDV) approach for estimating aerosol optical depth.  However, this is not 
applicable for most Arctic and sub-Arctic environments owing to the lack of dense 
vegetation targets. 

 Steps for calculating TOA reflectance: 
 
OPTION 1 – For use with PCI version 9.1 (Option 2 for v10.x see pg 34) 
 
a) We will use PCI-based programs developed by the CCRS Forestland Group (Robert 

Landry et al.) that are contained in the “Scripts” DVD directory.   
Before running the scripts, add six empty 8-bit channels using PCIMOD or Focus.   
In Focus this is done under the File tab by right-clicking on the database. 
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b) Transfer the USGS MTL file provided as a text file to the directory where the rest of 
your pix files are located.  The MTL file needs to be renamed from “xxMTL.txt” to 
“xxMTL.L1G” for it to be recognized by the script. 

 
NOTE:  For Parks where a NS mosaic is required (Wapusk) we decided to select the 
MTL file associated with the image covering most of the AOI.   Another option is to 
manually change the sun azimuth/ sun elevation in the MTL file to better reflect park 
centre location. 
 
c)  Setup required for running TOARTM/TOARETM scripts:  
 Put the toartm.exe & toaretm.exe file in the PCI exe folder  

e.g.: I:\Applications\pci\pci91\exe\  
 Also ensure that the exe directory contains these .dll files, otherwise you will get 

error messages: 

 
 

 Set Environment Parameters to run Scripts in PCI :   
From Control Panel Category View: Control Panel/Performance and 
Maintenance/System Properties/ Advanced/Environment Variables/ 
From Control Panel Classic View: Control Panel/System/System 
Properties/Advanced/Environment Variables 
Variable Name: PCIGROUP 
Variable Value: I:\Applications\pci\pci91 (or one directory level up from the exe 
folder) 
PCI will now first check that folder when you call a function in EASI.  The 
TOARTM and TOARETM routines require these changes in order to run. 
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d)  The TOARETM/TOARTM scripts:  
 Use TOARETM for Landsat-7 and TOARTM for Landsat-5.    
 Runs in EASI just like any other PCI command by typing <s TOARETM> at the 

prompt. 
 if your .pix path names are more than 64 characters, you will have to navigate to 

the .pix directory in the DOS Command Prompt, then start up EASI as shown 
below. 

 

 
 
Tip: Instead of having to enter the parameters for TOARETM each time, you can 
copy/paste the previously used prm file into the next folder to be processed.  Keep 
in mind that you still have to change the file and mtlfile parameters.      
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 MTL (or LEA) file: the USGS version of the MTL file now contains the time of 
acquisition required by the script, but you still need to enter it manually.  Open 
the MTL (LEA) file in a text editor and search for the time at the 
SCENE_CENTER_SCAN_TIME field. 

 If the Landsat-5 image is from MDA on CD you will receive LEA_0x.001 files 
instead of an mtl file.  Copy the LEA files related to bands 1,2,3,4,5,7 into folder 
with pix file and point the leafile parameter to that folder.  
EASI>leafile=”D:\1993\LEA\  (use quotation mark, and a backslash at the end 

of folder name) 
 Use VARIABLE scaling option to increase dynamic range of the channels.  Also 

remember that channels will need to be “de-scaled” later using the coefficients if 
one wants to properly compute Tasseled Cap or any other vegetation indices. 

 If you are unfamiliar with EASI, keep in mind that for the file & mtlfile variables 
you must use quotes at the beginning (ex: file=”D:\....) 

 Once the script is running it outputs information on the screen.  This information 
and additional information is also logged in a text .log file in your processing 
directory and should be kept.  

 
 

 
 
 

 
 
Note: If you are using PCI v9.x and 10.x at the same time, you may encounter a PCI 
exception error when you change the path environment for v9.x then try to use v10.x.  It 
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is unclear why this happens but a temporary fix is to change the environment variable 
when you need to use v10.x. 
 
 

 
 
 
 

OPTION 2 – For use with PCI version 10.x 
 

1. Place the three .txt script files shown below in a common directory: 
 

 
 

2. Place the raw tiff image files and *.L1G files for each Glovis Landsat scene into a 
unique directory.  Note that no other directories or files should be present. 

 

 
 

3. Open up an EASI command shell and run the script pixlink_glovis.txt.  You will 
be prompted to enter the path containing the subdirectories for the scenes to be 
processed.  This script will create .pix files having the same name as the directory 
and link the raw tiff images to them. 

 

 
 

4. Run the script TOA.txt.  You will again be prompted for the image path and the 
directory path where the ephemeris text file is located (see example below).  This 
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script will compute calibrated TOA reflectance and write this to channels 7-12 of 
the .pix file contained within each subdirectory scene.  Channels will contain 
TOA reflectance that is variably scaled to the same 8-bit range as used in the 
Landry TOA script, as shown below.  Note that these channels must be rescaled to 
absolute reflectance using the gains below before computing any channel ratios or 
vegetation indices. 

 
 

 
 

 
 
 

IV. Mask Cloud and Cloud Shadows  
 
In principle, an automated cloud/shadow masking method, such as the Automatic Cloud 
Cover Assessment (Irish et al. 2006), is preferable to a manual one to make data 
processing more efficient and to minimize the loss of useful data that can result from 
over-masking.  However, automated cloud masking can also produce poor results in 
northern environments, so a manual method is provided in this protocol.  Some potential 
drawbacks to applying automated cloud masking include: 
 
a) Spectral overlap of thin cloud with bright, northern land surfaces (figure 15). 
b) The tendency for an automated approach to consistently mask certain non-cloud 

features.  For example, an effective automated method is to compare (e.g. using 
differencing) the NDVI or NSDI index of a clear-sky master image to a cloudy 
image.  The resulting cloud mask could also include areas where there has been 
changes in snow or ice cover (figure 16) 

c) The tendency for an automated approach to consistently miss cloud over certain 
surfaces.  For example, an NDVI differencing approach is not very effective in 
masking cloud over water bodies, as this condition can produce a small increase in 
NDVI rather than a decrease (figure 16).  Note that accurate masking of cloud over 
water bodies is needed to allow for any change analysis of water bodies. 
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Figure 15 - Example of an automated, threshold-based cloud masking approach 
where bright land surfaces (outlined in yellow) spectrally overlap with thin cloud.  
Thin cloud can be separated manually based on contextual information, such as 
presence of nearby shadows.    
 
 

 
 
Figure 16 - Example of an automated multitemporal cloud/shadow masking approach 
(NSDI differencing against a clear-sky master image) where cloud over water is not 
masked and snow/ice patches are masked (pink areas in image) 
 
 

Manual method to create and apply masks to exclude clouds/shadows and 
bad/missing data 

 
a. Add 8 new 8-bit channels (13-20) to contain the cloud/shadow mask and SLC-off / bad 
data mask, and the final six masked TOA reflectance channels.   
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b. Add bitmap layer to contain cloud/shadow mask and create mask via the File tab.   
 

 
 
To make this bitmap layer editable, right click on the layer and select <view>, then layer 
will appear in the map tab.  Select the bitmap layer, a pencil will appear on the right of 
the layer name.  The layer can now be edited using the polygon tool at the top.  A 
453=RGB linear stretch works well for digitizing cloud and also separates snow/ice from 
cloud. 
 
It can be difficult to identify thin cloud and their shadows over bright tundra land covers 
that contain small lakes, bare peaks, and topographic shadowing (figure 17).  This is 
especially true for SLC-off scenes where a portion of the cloud or shadow may be hidden.  
Therefore, it is recommended to load the clearest Landsat scene(s) underneath in Focus to 
serve as a visual reference and help determine if light/dark patches are indeed 
cloud/shadow (figure 17). 
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Figure 17 – Examples of cloud and shadow (within circles) that are difficult to 
discriminate without the aid of a clear-sky reference image  

 
When you are done editing your mask, save the bitmap layer by right clicking on it 
under the Maps tab and selecting <save>. 
 
Figure 18 shows an example image with cloud and a manually created cloud/shadow 
mask bitmap in red.  (note that cloud over ocean does not need to be masked, as this can 
be done in the change analysis stage using a land/ocean bitmap).   

 
Figure 18 – Example image with manually created cloud / shadow mask (red bitmap 
on right panel) 

 
 
c. Run the EASI script MaskChannels.EAS (which calls the MODEL mask.mod).  
Open the MaskChannels.EAS file in notepad and read the 4 steps required to run the 
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script.   When prompted for the .pix file name, remember to not use quotes.  This script 
will: 
 

i) Transfer the cloud/shadow bitmap mask to channel 13. 
ii) Create a mask in channel 14 that identifies missing data along the scene 

edge and missing data resulting from SLC-off (figure 19).  This model 
simply determines if any of the input channels has a value of zero. 

 
 

 
Figure 19 – Examples of missing data along scene edge (left) and from SLC-off gaps 
(right) 

 
iii) Apply the cloud and no-data mask to create six masked TOA channels.  

The resulting masked image will look something like in figure 20. 
 

 
Figure 20 – Example of useful clear-sky data after applying cloud and no-data masks 

 
iv) Rename channels 1-6 and 13-20 as shown in figure 21. 
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Figure 21 – File structure and channel listing after applying TOA and cloud masking 
procedures 
 

Notes: 
 This script will not add the required channels, so ensure eight 8-bit channels 

are first added manually using PCIMOD or Focus.   
 You will need to verify that the cloud bitmap number in your image 

corresponds to the script (%% refers to bitmaps, % refers to channels), 
otherwise the script will need to be modified. 

 Some SLC-off scenes contain “bad” pixels bordering the SLC-off missing 
data stripes.  If this is case, then these pixels should be buffered out using the 
PRX algorithm:  Tools --> Algorithm Librarian -->All Algorithms --> PRX: 
Proximity Analysis.  Set the input layer to channel 14: the SLC-off and bad 
data mask that was created using the MaskChannels.EAS script.   
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On the Input Params 1 tab, set the following parameter values: 

 
 
Write an EASI script to update the cloud and shadow mask in bitmap 8: 

 

Delete channels 13-21 and rerun the MaskChannels.EAS script.  
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V. Visualize the TOA reflectance time series 
 
At this stage, it is helpful to examine the created TOA reflectance time series as a quality 
control measure to ensure that all the scripts worked properly.  This can also determine if 
there any phenology outliers in the time series that were not identified using the 10-day 
NDVI information from AVHRR.  Scenes can be displayed in Focus from most recent to 
earliest, as organized in the sample project file DisplayScenes.gpr (directory 
\Ivvavik\Scenes).  Displaying the masked TOA channels for each date (18,19,17=RGB) 
ensures that they are viewed using a common radiometric reference.  In addition, the 
same LUT stretch should be used to display all images on the same scale.  To do this, 
select a date closest to peak phenology (20060726 in this example), apply an 
enhancement, then save the LUT by right-clicking on the file in Maps view, selecting 
Enhance…Edit LUTs, selecting each histogram individually, then selecting 
Save….Save LUT.  This same LUT should then be used to display all other images by 
right-clicking each, selecting Properties…, then the Source LUTs tab as in the 
screenshot below to load the LUT saved above. 
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VI. Compute Vegetation Indices  
 
The Tasseled Cap (TC) transformation is based on linear transformations of the six 
Landsat optical bands into Brightness, Greenness, and Wetness indices (Crist and Cicone, 
1984).  Since the TC has the advantages of reducing data storage by half and providing 
physically-interpretable indices, they are used for calculating trends in this protocol.  The 
Normalized Difference Vegetation Index (NDVI), similar to the TC Greenness index, is 
also included since it is a standard index for vegetation change analysis.  
 
To calculate the TC and NDVI Vegetation Indices run the EASI script VegIndices.EAS 
(which calls the MODEL TasseledCap_NDVI.mod).  This script uses the TC 
coefficients for Landsat 7 TOA reflectance published in Huang et al. (2002) and shown 
below.  Open the VegIndices.EAS file in notepad and read the steps required to run the 
script.   When prompted for the .pix file name, remember to not use quotes.  This script 
will: 
 

i) Add 4 empty 16U channels to output incides 
ii) Calculate the three Tasseled Cap Transformation (TC Brightness, TC 

Greenness, TC Wetness) for top or atmosphere corrected channels for 
Landsat.    These represent about 95% of the information contained in 
the six optical channels. 

iii) Calculate NDVI, which will be highly correlated with TC Greenness 
iv) Variably scaled TOA channels are first converted to TOA on scale of 

0-1.  Final TC components are multiplied by 1000 
 
 
Table 2 – Tasseled Cap coefficients for Landsat 7 TOA reflectance. 
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VII. Generate a Landsat Image Stack  
 
After each individual scene is pre-processed using the previous steps, they must be 
combined into a single .pix database (or image data stack) so that time series values can 
be extracted for each pixel location and their trends computed. 
 
a) Create an empty database using CIMPRO that has an extent sufficiently large to cover 
the park area and an outside buffer zone within the Greater Park Ecosystem.  The final 
database we will use file interleaved format, as it is compatible with the next step 
(TheilSen Regression) in IDL.  In our example, the number of signed 16-bit channels 
created should be four times the number of dates.  A PCI table showing UTM Rows for 
the “ROW” parameter is included on pg 24. 
 

 
 
 
(b) Transfer all the Vegetation Indices (4 per date) from your single processed scenes (or 
N-S mosaics) to the master MOSAIC file.  Start with the earliest year and proceed 
chronologically.  An example EASI script (Build_Stack.EAS) is included that can be 
edited to automate the process.  The next step will require that the image date be included 
in the channel description.  Run a test to make sure is this occurring.  If the path is too 
long when you run MOSAIC the image date will not appear in the new file.  If that 
occurs try mapping your drive to a folder higher up or use the EASI trick as per page 32. 
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After combining all channels into the stack database, an additional 8-bit channel can be 
added (e.g. using PCIADD2 in EASI) to compute that total number of clear-sky 
observations for each pixel.  This channel can be used later for assessing and screening 
the trend results.  A script named Count_Observations.EAS can be edited to calculate 
this channel.  The final number in the “for” statement (i.e. 53) should correspond to the 
first channel of the last date added, and the number in the “SOURCE” line (i.e. 57) 
should correspond to the added 8-bit channel. 
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(B) Data analysis methods 

I. Computing Long-Term Spectral Trends  
 
The primary goal of this method is to map gradual, long-term changes to spectral 
reflectance properties of the land surface, which are then related to vegetation change.  
Spectral trends are measured using a robust linear regression technique called Theil-Sen 
(Kendall and Stuart, 1967) applied to each pixel time series in the image stack.  Theil-Sen 
is a rank-based regression technique in which slope is calculated from the median of all 
possible pair-wise slopes.  It is resistant to up to 29% outliers, which in this case could 
represent pixels impacted by atmosphere, snow, or antecedent rainfall, or scenes that 
deviate from peak phenology that were not screened.  The significance (p-value) of the 
rank-based correlation coefficient tau, which is a measure of the strength of the 
monotonic relationship between x and y, is computed for each pixel.  The regression 
slope and offset from each pixel’s regression is then used to generate synthetic TC 
images corresponding to the date of the high-resolution image used to train the Landsat 
fractional classifier.  TC images are also created for the first and last Landsat stack date 
in order to apply the fractional classifier through time to estimate land cover change.   
 
An IDL program created by Darren Pouliot of CCRS is used to generate NDVI and 
Tasseled Cap Brightness, Greenness and Wetness trends from raw image channels.  The 
IDL Virtual Machine (http://www.ittvis.com/ProductServices/IDL/VirtualMachine.aspx)   
can be downloaded for free to run the trends program 
(TemporalTrendProcessing_MKTest_Int_GT0.sav in the \Trends directory). Once 
launched from Windows Explorer by double clicking on the program (.sav) file, the 
program requests a parameter text file specifying the pixel and line dimensions of the raw 
input files, a minimum separation distance in x and y for inclusion of a slope in the Thiel-
Sen calculation, the maximum number of samples used in the regression, and the type of 
raw image channels being input.  
 

 

A list of input files must be specified next. This is a text file with each line specifying a 
raw image file including full path and the time of image acquisition separated by a 
comma. Time-series may contain one image per year in which case time may be specified 
as years and trend images will map changes per year. However in some cases, a time-
series may contain more than one image per year, in which case time is specified as days 
since the first image acquisition and trends are mapped as changes per day. Days since 
first image acquisition may be obtained using Excel by changing the format of the cells 
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containing image dates from ‘Date’ to ‘General’, which provides the number of days 
since 1900. By subtracting the number of days minus one of the first image from all 
dates, days since first image acquisition are generated. An example file list is shown 
below.  

 

The IDL program generates four 32-bit raw output images of regression parameters. The 
files are named according to the name of the file list, with extensions describing the 
generated regression parameter. The _slope.img file maps the Theil-Sen slopes, with an 
_offset.img file describing the regression offsets. Two significance channels are also 
generated, which map the Z-scores of the regressions from which significance may be 
obtained using a standard normal (Z distribution) table. The _sig.img file is significance, 
while the _siga.img is significance adjusted for the effects of temporal autocorrelation. 
Both are highly related and the unadjusted significance level is generally used.  

Once generated, the regression parameter output files can be linked to a .pix file with the 
same dimensions as the input files using PCIADD2 in XPACE versions 9.1.8 and earlier.  
This is described in the next section. 
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II. Summarizing Spectral Trend Results 
 
The output channels from the Theil-Sen regression are listed below and can be found in 
the \Ivvavik\Trends\directory.  There are be slope channels, adjusted significance 
channels, and offset channels for each vegetation index in the image time series.  The 
.img extension does not indicate that these are ERDAS files.  These are raw, 32-bit binary 
files, or PCI band interleaved channels. 
 
Trends.pix 
filelist_NDVI.txt_slope.img 
filelist_TCB.txt_slope.img 
filelist_TCG.txt_slope.img 
filelist_TCW.txt_slope.img 
filelist_NDVI.txt_siga.img 
filelist_TCB.txt_siga.img 
filelist_TCG.txt_siga.img 
filelist_TCW.txt_siga.img 
filelist_NDVI.txt_offset.img 
filelist_TCB.txt_offset.img 
filelist_TCG.txt_offset.img 
filelist_TCW.txt_offset.img 
 
Slope channels, for each pixel: 
 Bright values= increase slope (positive values) 
 Zero values = No trend  
 Dark values = decreasing slope (negative values) 
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Siga channels: Those p-value channels are actually z-scores measured in standard 
deviations.  Therefore, a trend is significant at the p<0.05 level if the z-score falls outside 
of the range -1.96 to +1.96. A trend is significant at the p<0.1 level is the z-score falls 
outside the range of -1.6449 to +1.6449. 
 
a) Create a new pix file (Trends.pix) using CIMPRO in EASI, to which the output files 

will be linked. 
 

 
  
b) Link the raw images channels (.img) from the TheilSen analysis to this new pix file 

using PCIADD2.  This ensures the when you will export in the next step the 
georeferencing information follows.   

 

 
 
c) Export each channel as individual TIF files to the \Ivvavik\Trends\geotiffs\ directory .  

You can do this using FEXPORT or in Focus by right-clicking the database file and 
selecting “Translate (Export)…” 
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d) To import the geoTIF files to Arc rasters (grids) all at once, use the “Raster To 

Other Format” conversion tool in ArcToolbox as shown below.  Import these to the 
\Ivvavik\Trends\arc_gis\ directory 
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(note – in the case above Arc assigned the imported tiffs to a Transverse projection 
instead of UTM zone 7.  This can be corrected by editing the Spatial Reference 
Information in Raster Dataset Properties for each imported file in ArcCatalog).    
 
e) Using the above steps, export the Count channel from Stack.pix to a geotif and then 

import as a grid into the arc_gis directory. 
f) We will be doing some image multiplications.  To do this you will need to create a 

series of MASKS using Spatial Analyst/Raster Calculator. 
 

i) Park Boundary Mask: One mask with 0= park exterior and 1= park interior.   
Spatial analyst/Convert/Feature to Raster, use pixel output size of 30m and 
select an appropriate field.  If the results are reversed that what you need 
simply use the Reclassify function in spatial analyst to reclassify your raster. 
 

 
 

ii) Number of Observations Mask: You may want to limit your analysis to 
areas where there are more than a certain number of clear-sky observations.  
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The number of observations for each pixel can be calculated by adding an 8-
bit channel to Stack.pix, running the script Count_Observations.EAS, then 
converting the output channel to an Arc raster.  Note that the number of 
observation per pixel varies not only with the number of images but also with 
occurrence of cloud cover & slc-off areas. 

 
Example of Spatial Analyst/Raster Calculator for n>=6: 
count_7p=con([Count] >= 6,1,0) 
 

 
 
 

iii) Variable Illumination Mask:  We have found that steep north-east facing 
slopes can be associated with noisy results (i.e. false trends) due to the fact 
that large illumination changes occur in these areas throughout the summer 
growing season.  For example, figure 23 shows negative NDVI trends 
overlaid on a shaded DEM relief for a mountainous area of Ivvavik, where the 
low-illumination NE slopes appear dark. 

 
You therefore may want to use a combination of slope and aspect to create a 
mask that eliminates areas with steep slopes and slopes low solar radiation. 
Here, slope was calculated as percent rise.   Aspect can be thought of as the 
slope direction expressed in degrees from 0 to 360, measured clockwise from 
north.  A transformation of aspect can be derived where the most illuminated 
SW slopes are given a value 0, increasing to a value of 200 for the least 
illuminated NE slopes:   
 
asp_trans = int(1 + cos((45 - aspect) div deg)) * 100 
 
A combined mask can then be created that identifies steep slopes (e.g. > 30 
percent) that are facing north of NW or NE (figure 23 right panel, figure 24): 
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slope_aspect=con(slope_per > 30 and asp_trans > 100, 0,1) 
 

 
Figure 23 Negative NDVI trends in red superimposed over hillshaded DEM in 
mountainous portion of Ivvavik (left).  A slope-aspect mask (blue) and how these 
negative trends are associated with steep, NE facing slopes that have variable 
illumination throughout the summer (right). 

 
 

 
Figure 24 – Slope-aspect map (black) for the entire Ivvavik sample dataset window. 
 

iv) Significance Mask:  Create a Mask for non-significant values (p>0.05): 0 as 
non-significant and 1 as significant (figure 25).  You will have 4 of these 
masks, one for each vegetation indices. 
Example of Spatial Analyst/Raster Calculator: 
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sig_NDVI_mask=con(([sig_NDVI] < -1.96 |  [sig_NDVI] > 1.96),1,0) 
 

 
Figure 25 - Statistically significant (p<0.05) NDVI trends shown in grey 
 

g) Now that all masks are prepared with the areas of interest set to 0, they can be 
multiplied by the slope channel.  This will set areas that are not of interest to a slope 
of zero for each vegetation indices.  
Example of Spatial Analyst/Raster Calculator: 
slope_NDVI_m  = [slope_NDVI] * [sig_ndvi_mask] * [land_mask] * [count_7p] 

 
Figure 26 - Example showing the result for positive slope/trend (greening) in green and 
negative slope (greenness decline) in red.   All no data areas (masked) are show in 
black. 
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h) In the next step we will take the output of the previous step and convert the 0 to Null 
values.  We will need this to calculate the average slope per ecotype or landcover.  
Keep both versions of the ouput from d) since they each serve a purpose.  
Example of Spatial Analyst/Raster Calculator: 
slope_ndvi_mn=setnull([slope_ndvip5] == 0, [slope_ndvip_mn]) 

 
i) Calculate the average slope of the 4 vegetation indices for each ecotype in the PEM 

map or for each land cover class (figure 2).   This can be done using Spatial Analyst 
via ArcMap or the Toolbox.   
Example of Spatial Analyst Tools/Zonal/Zonal Statistics as Table 
 

 
  

The output is a dbf table that can be imported in Excel to summarize the results 
and create charts (figures 27-28).   

 

 
Figure 27 – Northern land cover classes for tutorial study area in Ivvavik National Park. 
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Figure 28 – Mean slope (trend) value for each northern land cover class. 
 
Figure 29 shows the mean slope for each value in the Predictive Ecosystem Mapping 
(PEM) classification (figure 30). 

 

 
 
Figure 29 – Mean slope (trend) value for each PEM class. 
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Figure 30 – Predictive Ecotype Map (PEM) for tutorial study area in Ivvavik National 
Park. 
 
ArcGIS Tips 
 To stop ArcMap from building Pyramids, which can create artifacts when zoomed to 

full extent, use ArcMap\Tools\Options\General Tab\ 
 V10 Customize\ArcMap Options\Raster\ Raster Dataset\ 
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 Clipping Landcover to Park Boundary.  Spatial Analyst/Options & Set Analysis mask 

to Park Boundary 
 

Raster Calculator 
NLCC_clip=[Ivvavik_NLCC_UTM.tif] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 A quick way to obtain image statistics via ArcCatalog.  Export Statistics to XML then 

open file in WORD.  From there you can copy paste in Excel. 
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III. Calculating Sub-pixel Land Cover Fractions from Trends 
 
The most quantitative change product that can be produced from the Landsat stack trend 
analysis is sub-pixel land cover fractions.  This maps land covers change as a continuous 
rather than categorical variable to provide greater sensitivity to detect subtle and long-
term climate-induced changes to vegetation.  Regression tree modeling provides an 
effective means of estimating the fractional land cover composition of pixels (Xu and 
others, 2005; Olthof and Fraser, 2007; Selkowitz, 2010).  Regression trees are used here 
to model sub-pixel Landsat fractions by relating fractional pixel land cover composition 
derived from a high-resolution classification to generated baseline Landsat TC index 
values (figure 31).  The model can then be applied to first and last date imagery generated 
from the Landsat stack trend parameters to derive long-term fractional land cover change.  
Detailed steps are described below.  Input and processed files used for this section can be 
found in the “/Regression Trees” directory of the tuturial.   
 
 

 
Figure 31 – Method for computing land cover change fractions from reflectance trends. 
 
 
a)  Generating Tasseled Cap channels from Landsat stack trend parameters 
Tasseled Cap indices are generated for the baseline Landsat date (August 4th, 2004; 
corresponding with the acquisition date of the high resolution image) and the first and last 
date in the Landsat stack.  In this example, the first scene in the Landsat stack is from 
July 12th, 1986 (day 1) and the last scene is from August 21st, 2009 (day 8442).  Pixels 
that show significant (p<0.05) slope trends in a given Tasseled Cap channel are assigned 
the computed Tasseled Cap values based on the Landsat trend parameters.  Pixels with 
non significant trends in a given Tasseled Cap channel are assigned the average Tasseled 
Cap value from all of the dates included in the stack.pix file. 
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Create three new 16s channels in the stack.pix file and use EASI to calculate the average 
Tasseled Cap indices of all the dates in the stack (i.e. TCB average=sum of TCB for all 
dates in stack/number of dates with valid TCB values in stack.pix).  Note: order of 
channels in stack.pix for a given date is TCB, TCG, TCW, NDVI. 
 

 
 
Transfer the 3 average Tasseled Cap indices channels to trends.pix 
 
Create 9 new 16s channels in the trends.pix file. 
 
Write an EASI script to calculate the trend Tasseled Cap values for pixels with significant 
slope trends in a given Tasseled Cap channel (see screenshot below and TC_calc.EAS 
for an example).  As noted in section ii, the significance channels are actually z-scores 
measured in standard deviations.  Therefore, a trend is significant at the p<0.05 level if 
the z-score falls outside of the range -1.96 to +1.96. A trend is significant at the p<0.1 
level is the z-score falls outside the range of -1.6449 to +1.6449.   
 channel value = slope  day* + offset 
 e.g.  TCG_2009 = TCG_slope  8442 + TCG_offset 
*The units for the time variable used to calculate the trend parameters are in days.  The 
first date in the Landsat stack is set to 1.  For other dates in the stack, use the dates.xls 
document or the date function in Excel to determine the equivalent number of days 
elapsed since the first date in the stack. 
 
Pixels with non significant trends in a given Tasseled Cap channel are assigned the 
average Tasseled Cap value from all of the dates included in the stack.pix file. 
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b)  Upscaling the fine resolution land cover classification to obtain baseline Landsat 
land cover fractions 
 
Two options are provided for scaling up a fine resolution classification to model 30 m 
sub-pixel Landsat fractions.  Use the first option if no quadrat field plot data are available 
that can be used to estimate the fractional composition of the fine resolution pixels.   
 
OPTION 1 – Using a ‘hard’ fine resolution classification (option 2 pg 68) 
 
A land cover classification based on high resolution (1-4 m) imagery is used to quantify 
30 m land cover fractions within the corresponding Landsat subset window.  For the 
study area, an Ikonos scene from August 4th, 2004 was co-registered to a clear-sky 
Landsat scene from July 24th, 2005 using image correlation (RMS = 1.0 m using 42 tie 
points).  Four basic land cover classes (shrub, bare, herbaceous, and water) were assigned 
to the Ikonos scene based on their dominance within the 4 m pixels by labeling 60 
spectral clusters resulting from fuzzy k-means unsupervised classification.  Clusters were 
labeled using georeferenced and mosaiced aerial photos acquired by helicopter during 
summer 2008.  The fractional composition of each 30 m Landsat pixel within the 80 km2 
Ikonos scene was then determined by summing the 4 m land cover classes within the 
spatially coincident 8-by-8 pixel (32-by-32 m) footprint. 
 
Reprojecting the land cover classification: 
The land cover classification must be in the exact same projection as the Landsat data. 

 
To display a file’s projection information:  in Focus, right-click and select 
Properties…   
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Select the Projection tab to display the projection information for that file. 

 
 

Note: Erdas does not recognize datum D-04 (Nad 83).  Instead it uses E008 
(GRS1980).  If the Landsat data is in D-04, then it should to be reprojected to 
E008 before it is exported to .img format. 
 
To reproject: in Focus, under the Tools menu, select Reprojection... 
Reproject the land cover classification to the same projection as the Landsat data. 
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Obtaining baseline Landsat land cover fractions  
 
Creating the subset Landsat window:  
Create an empty database with the same extent as the land cover classification 
(Note: you will need to adjust the lower-right coordinates to be compatible with 
the 30 m pixel size).  It will have 30 m pixels and 3 empty 16s channels to hold 
the generated baseline date Landsat Tasseled Cap indices from the trends.pix file. 
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Transfer the generated baseline date Landsat Tasseled Cap indices from the 
trends.pix file to the new database called Landsat_baseline.pix. 

 
 
 
The baseline Landsat land cover fractions are computed using the class_fract.txt 
script.  Note:  Image-to-image georeferencing between the high resolution land 
cover classification and the Landsat scene must be accurate to achieve good 
results.  

  
In this case, the land cover classification contains four land cover classes.  Verify 
that these are coded starting from 1 (e.g., bare class = 1; herbaceous class = 2; 
shrub class = 3; water class = 4).  Create four new 8u channels in the database 
containing the subsetted baseline Landsat imagery.  These four channels will 
receive the fractions of fine resolution classes 1 - 4 contained within each coarse 
resolution Landsat pixel.  The sum of fractions 1 - 4 should equal 100% +/- 1% 
due to possible rounding errors. 

 
In EASI, run the class_fract.txt script: 

 
 
Areas of the subsetted baseline Landsat scene not covered by the land cover 
classification must be masked out in order to build the regression tree.  As such, a 
background/ocean bitmap was included in the land cover classification file.  
Transfer the background/ocean bitmap from the land cover classification to the 
subsetted baseline Landsat scene. 
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Add 1 new 8u channel to Landsat_baseline.pix  and copy the new background 
bitmap to the new channel. 
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Using the PRX algorithm in Tools  Algorithm Librarian, buffer the background 
bitmap by 1 pixel to account for edge effects. 

 

 
 
Add the buffered pixels to the background bitmap: 
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Delete the last two channels: 
 

 
 
Add 4 new 8u channels to Landsat_baseline.pix and write an EASI script to set 
the background of the fraction channels to an arbitrary value of 255 (since no 
pixel would have a land cover fraction greater than 100).  Also, it is implied that 
only generated baseline Landsat pixels with a sufficient number of observations 
(in this case, a minimum count of 6 is used, as determined from channel 106 in 
stack.pix) should be included in the regression tree training.  In this case, since all 
of the pixels within the Ikonos scene extents meet that requirement, no further 
masking is necessary.  Otherwise, the pixels in channels 8, 9, 10, and 11 with a 
count of less than 6 would also have been set to 255. 
 

 
 
 
……NOW SKIP TO SECTION (C) PG 81 
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OPTION 2 – Using a ‘fuzzy’ fine resolution land cover classification generated from 
field plot data:  (illustrated using example from Sirmilik National Park) 
  

If field plot data with vegetation composition (e.g. from quadrats) are available 
within the extent of the fine resolution scene, they can be used to create a 
regression tree model to obtain a fuzzy fine resolution land cover classification 
which can then be used to obtain the baseline Landsat scale land cover fractions.  
If feasible, this approach is preferable to the ‘hard’ fine resolution classification 
method described above for the Ivvavik tutorial dataset, since it doesn’t make the 
assumption that 2.4-4m pixels have a single, pure cover type.   
 
In this example from Sirmilik, field photos from 92 sites near Pond Inlet were 
acquired during summer 2010.  The 92 field sites are located within the extents of 
a 2.4m Quickbird scene acquired August 2nd, 2008.  Five downward-looking 
photos of 1 m quadrats were collected for each of the 92 field sites.  The five field 
photos for each site were assessed to determine the percentage of low shrub, 
prostrate shrub, herbaceous (graminoids and forbs), moss, lichen, bare and water 
within each quadrat (summing to 100%) within each photo.  These classes were 
then merged into bare (bare and lichen), vascular (low shrub, prostrate shrub, 
herbaceous and moss) and water.  The percentage of bare, vascular and water for 
each site’s five quadrats were averaged and assigned as the land cover fractions 
for the corresponding 2.4 m Quickbird pixel. 

 
For each land cover type, create a tab delimited text file containing the easting 
coordinate, northing coordinate and land cover fraction.  If necessary, compare 
the fine resolution imagery with the field photos and adjust the field site 
coordinates. 

 
 

In Quickbird_17XE008.pix, add 3 8u channels.  Use NUMREAD to read the land 
cover fractions from the text files into the 3 newly created channels. 
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Add 3 new 8u channels and set non field points to 255. 
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Convert the Quickbird imagery and field fractions to .img format.  The Quickbird 
imagery channels (Blue, Green, Red, NIR, NDVI) must be converted to a single 
.img file and the fraction channels must be converted to individual .img files. 

 

 
 
 
Open the NLCD Sampling Tool… in ERDAS. 
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Define the following parameters and repeat for each land cover fraction.  Note 
that the Ignore values field is set to be the same as the background values in the 
fraction files:  255.  Also, since there are only 92 field points available, the 
models are highly dependent on the training sample.  As such, all 92 field points 
are used for training the regression tree models.  If desired, a series of 20-30% 
validation holdout sample tests can be run and averaged to assess the true strength 
of these models. 

 
 
 
To build the regression tree models, open Cubist and open (File  locate data) 
the .data file for a given land cover fraction. 
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Build the model for a given land cover (File  build model) by using the default 
settings.  Repeat for each land cover. 

 
 

 

 
 

To apply the regression tree models to obtain the predicted Quickbird land cover 
fractions, open Cubist Classifier... in the NLCD Mapping Tool 
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Classify each land cover fraction: 

 
 

The predicted .img fraction images are then recombined into a single .pix file. 
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A closer examination of the predicted bare and water fractions reveals some 
confusion between the two.  This is caused by the insufficient representation of 
water fractions in the field data.  Hence the field data is not fully representative of 
the water signal in the Quickbird scene.  Considering that water pixels tend to be 
relatively pure at the 2.4 m scale, the clusters from the unsupervised classification 
of the Quickbird scene identified as water (including wetlands) can be used 
instead.  Transfer the aggregated classification to predicted_QB_fractions.pix. 
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Add 3 new 8u channels, separate the water class from the unsupervised 
classification and burn it into the bare and vascular class. 

 
 

 
Add 3 new 8u channels and scale the predicted bare and vascular fractions. 

 
 

Use a 13*13 FAV filter in the Algorithm Librarian to scale up the land cover 
fractions to Landsat scale (30 m / 2.4 m = 2.5, which is rounded up to 13). 
 



 76 

 
 

 
 

Creating the subset Landsat window:  
 
At this step, an empty database covering the same extent as the fine resolution 
scene would usually be created.  However, since the Quickbird scene over Pond 
Inlet does not cover areas where glaciers are present, a land cover type we wish to 
monitor that is relatively pure even at a scale of 30 m, the extents for the subset 
Landsat scene are expanded in this case to include glaciated areas on Bylot Island.  
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The subset Landsat scene will have 30 m pixels and 3 empty 16s channels to hold 
the generated baseline Landsat Tasseled Cap indices from the trends.pix file.  
Small polygon samples over glaciated areas will be manually defined and burned 
into the baseline Landsat land cover fractions. 

 
 

Transfer the generated baseline (same date as Quickbird scene acquisition date) 
Landsat Tasseled Cap indices from the trends.pix file to the new database. 

 
 

Add 3 new 8u channels to Landsat_baseline.pix and mosaic the 13*13 FAV 
scaled land cover fractions from predicted_QB_fractions.pix 
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Add a new bitmap to Landsat_baseline.pix.  Using imagery or ancillary data (such 
as the Circa-2000 Northern Land Cover of Canada dataset available on 
www.geogratis.ca), manually identify polygons consisting of pure (100% at 30 m 
scale) snow and ice samples.  See rectangular green polygons in the ice samples 
bitmap in the figure below: 

  

Add 2 new 8u channels to Quickbird_17XE008.pix and convert the QB 
background and QB blue stripes (a small area in the Quickbird scene is subject to 
a striping artefact in the blue channel) bitmaps to rasters.  You may also require a 
bitmap to mask cloud and shadow if present in the high resolution scene. 
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Add 2 new 8u channels to Landsat_baseline.pix and mosaic the QB background 
and QB blue stripes rasters from Quickbird_17XE008.pix into the new channels. 

 
 
Add 1 new 8u channel to Landsat_baseline.pix  and mosaic the minimum count 6 
channel from Sirmilik_stack.pix into the new channel. 

 
 

Add 3 new bitmaps to Landsat_baseline.pix and transfer the QB background, QB 
blue stripes and minimum count 6 channels to the new bitmaps then delete the 3 
raster channels. 

 



 80 

Add 4 new 8u channels to Landsat_baseline.pix and burn in the ice class and set 
pixels outside of the analysis area to 255. 
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c) Building regression tree models to predict 30m Landsat fractions 
 
The Cubist regression tree package by Rulequest Research is used to construct trees to 
predict the 30 m fractions for each class based on the three TC regression trend values 
corresponding to the Ikonos date.  Trees can then be applied to the TC regression trend 
values derived for 1985 and 2009.  In cases where pixels do not display significant 
(p<0.05) trends in a given TC index, the mean TC value from all pixel-level observations 
in the Landsat stack is used and held constant.  A simple differencing of fractions from 
1985 and 2009 quantifies the changes predicted during the Landsat observation period. 
 
Two options are provided to create the models using Cubist.  Option 1 requires the use of 
ERDAS software and the NLCD sampling tool.  If ERDAS is not available, option 2 
provides scripts to translate between PCI .pix imagery and a format suitable for Cubist 
modeling. 
 
OPTION 1 – Using ERDAS / NLCD Sampling Tool Interface to Cubist (OPTION 2 
on pg 88) 
 

i)  Converting to .img: 
The Landsat baseline and trend-based 1986 and 2009 TC indices must be 
converted to .img format.  The 3 Tasseled Cap channels for each date must be 
converted to a single .img file (one .img file for each date) and the fraction 
channels in the Landsat2005_window.pix (or Landsat_baseline.pix) file must be 
converted to 4 individual .img files. 

 

 



 82 

 

 
 
There now should be 7 .img files:  barefrac.img, herbfrac.img, shrubfrac.img and 
waterfrac.img (each containing a single fraction channel from 
Landsat_baseline.pix), as well as tc_indices.img (containing the 3 subsetted 
generated baseline Tasseled Cap indices from Landsat_baseline.pix), 
tc_indices_86.img (containing the 3 generated 1986 Tasseled Cap indices from 
trends.pix) and tc_indices_09.img (containing the 3 generated 2009 Tasseled Cap 
indices from trends.pix). 
 
ii)  Sampling for regression tree: 
Open the NLCD Sampling Tool… in ERDAS. 
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Define the following parameters and repeat for each fraction.  Note that you 
should define Ignore values if there are areas of the subsetted baseline Landsat 
scene that are not covered by the land cover classification or are affected by 
cloud/SLC-off.  In this case, we set the ignore values to be the same as the 
background values in the fraction files:  255. 
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iii)  Building regression tree models: 
Open cubist and open (File  locate data) the .data file for a given fraction. 

 
 
Build the model for a given fraction (File  build model) by using the default 
settings.  Repeat for each fraction. 
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d)  Applying regression tree models to obtain land cover fractions 
 
The generated .names files are hardcoded to use the same dataset as was used to build the 
regression tree model (i.e., tc_indices.img).  It is therefore necessary to rename the 
dataset that was used to build the model (e.g., tc_indices.img  tc_indices_bac.img) then 
rename the dataset to be classified using the original dataset name (e.g., 
tc_indices_09.img  tc_indices.img).  The datasets may be returned to their original 
names after the regression tree model has been applied.  Repeat for 1986. 
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In ERDAS, open Cubist Classifier... in the NLCD Mapping Tool 

 
 
Classify each fraction for the first and last dates: 
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The predicted .img fraction images are then recombined into a single .pix file. 

 

 
 
The fraction channels are then normalized such that the sum of the fractions for a given 
pixel is equal to 100. 
  Create 10 new 8u channels 
  Write an EASI script to normalize the fraction channels 
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Add 4 16s channels and calculate the fraction differences: 

 
 
OPTION 2 – Use PCI scripts to Interface to Cubist 
 
Two EASI scripts are available that provides the ability to translate between PCI and 
Cubist without the use of ERDAS.  Follow the steps described above to build and then 
apply the regression tree models. 
 
The script Cubist_translate.txt in the \Scripts diretory will translate a .pix file to the 
format that Cubist requires for training regression trees. 
 
The script Cubist_sample.txt will convert the Cubist regression tree model output to a 
PCI model that can then be applied to the predictor channels in a .pix file. 
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e) Visualizing and summarizing the changes in land cover fractions between two 
dates 
 
Before visualizing the changes in land cover fractions, some masks need to be applied.  
In trends.pix, create a mask to distinguish between pixels with no change due to them 
not being updated (no significant trends in any Tasseled Cap index channel) vs pixels 
with no change in land cover fractions despite having been updated (at least one 
significant trend for one of the Tasseled Cap index channels). 
Add 1 8-bit channel to trends.pix and run the following EASI script: 

 
 
Export the newly created mask to the predicted_fractions.pix file. 
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In addition, commonmask.pix contains one channel that masks out ocean, slopes with 
topographic shadows and pixels with a low number of counts included in the trends.  Add 
1 8-bit channel to the predicted_fractions.pix file and mosaic the mask from 
commonmask.pix to predicted_fractions.pix. 

 
 
Add 1 8-bit channel to predicted_fractions.pix and apply commonmask to the sig vs non 
sig mask: 

 
 
Add 4 16s channels to predicted_fractions.pix and apply the sig vs non sig under 
commonmask mask the fraction differences to set pixels with no significant trends or 
pixels outside the area of interest to a background value of 255. 
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Export the 4 fraction difference channels and the “sig (1) vs non sig (2) under 
commonmask” mask to individual geotifs. 

 
 
Open the geotiffs in Arcmap and export them to a grid format.  The associated pyramids 
file (.rrd) created by this process can be deleted. 
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Use the Set Null tool in the Spatial Analyst tools in Arctoolbox to set the 255 background 
values in each fraction differences grid file to null. 

 
 

 
Create and save an Arcmap project named Fraction Differences.mxd containing the four 
fraction difference grids (with null values) and the sig1_nonsig2 mask grid.   
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Right-click on the sig1_nonsig2 layer and select Properties…  Under the Symbology tab, 
select unique values and set values of 0 to black, values of 2 to 40% gray and values of 1 
to no colour. 

 
 
Right click on a land cover fraction difference layer and select Properties…  Select the 
Symbology tab and select Classified.  Visualize the changes in land cover fractions with a 
red to green colour ramp from the drop down box.  Under Classification, specify 10 
classes and click on the Classify… button: 
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Click on the Classify… button and manually specify the following class break values 
then click OK: 

 
 
To mask out small land cover changes (less than 5%), double-click on the -5 – 0 and 0 – 
5 classes and set them to 40% gray: 
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Figure 32 shows the modeled fractional changes for the four land cover fractions in 
Ivvavik (green=increase, red=decrease). 
 
bare land cover: 

 
 
herb land cover: 
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shrub land cover: 

 
 
water land cover: 
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Figure 32. Modeled fractional changes for the four land cover fractions in Ivvavik 
 
To quantify the observed changes in land cover fractions, right-click on a land cover 
fraction difference layer and select Open Attribute Table.  Under the Options dropdown 
box, select Add Field… and add a field named NEGATIVE_CHANGE of type Long 
Integer. 

 
 
Add a second Long Integer field named POSITIVE_CHANGE as well as a Double type 
field named VALUE_MULT_COUNT. 
 
Select Start Editing in Arcmap’s Editor Toolbar.  Right-click on the 
NEGATIVE_CHANGE field header and select Field Calculator.  Assign the COUNT 
value to the NEGATIVE_CHANGE and POSITIVE_CHANGE fields. 
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Assign a value of COUNT*VALUE to the VALUE_MULT_COUNT field. 

 
 
Edit the NEGATIVE_CHANGE and POSITIVE_CHANGE fields such that cells with 
associated values >-1 (in the VALUE field) in the NEGATIVE_CHANGE field and cells 
with associated values <1 (in the VALUE field) in the POSITIVE_CHANGE field are set 
to 0. 
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In Arcmap’s Editor toolbar, select Save Edits and Stop Editing. 
 
At this point, the field statistics in the Attribute Table can be used to summarize the land 
cover change fractions.  Right-click on a field header and select Statistics...  Record the 
sums of the COUNT, NEGATIVE_CHANGE, POSITIVE_CHANGE and 
VALUE_MULT_COUNT fields (in an excel spreadsheet, for example).  Also record the 
number of pixels with significant trends (value of 1) and no significant trends (value of 2) 
under commonmask in the sig1_nonsig2 layer. 
 

 

 %area decrease 
%area no 
change 

%area 
increase 

average 
%change 

bare 20.7 70.3 9.0 -3.3 
herb 16.0 74.6 9.3 -1.0 
shrub 10.5 77.9 11.6 0.5 
water 3.0 71.2 25.8 3.8 

 
where: 
%area decrease=(negative_change sum)*100/(total # of pixels under commonmask) 
%area increase=(positive_change sum)*100/(total # of pixels under commonmask) 
%area no change=100-%area decrease-%area increase 
average %change=(value_mult_count)/(total # of pixels under commonmask) 
 
 

 

pixels with sig 
trends under 
commonmask 

pixels with no sig 
trends under 
commonmask 

total number of 
pixels under 
commonmask 

negative
_change 
sum 

positive_
change 
sum 

Value_mult
_count sum 

bare 873239 1661207 2534446 525532 227103 -8489946 
herb 873239 1661207 2534446 406176 236768 -2636032 
shrub 873239 1661207 2534446 267229 292833 1337345 
water 873239 1661207 2534446 75709 653583 9587789 
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(C) Validation 
 
An important requirement for Parks Canada EI monitoring protocols is that they assess 
their monitoring measures in terms of errors, limitations, and sensitivity to changes.  The 
most common and reliable method to evaluate a remote sensing derived product is to 
compare it to independent validation data collected in the field.  For example, errors in a 
land cover classification product can be quantified by comparing the mapped classes to 
actual classes measured in the field using an error or confusion matrix.  This form of 
direct ground-based validation, however, will normally not be possible for the vegetation 
change products generated by WP 1.1.  The major reason is that measurements of Arctic 
vegetation change matching the spatial (kms2) and temporal (> 10 years) extents of the 
Landsat change products do not exist.  This protocol must therefore use a range of other 
approaches for validating the change products and assessing their sensitivity to real 
changes.  The key features for this assessment are as follows. 
 

1. Robust Methodology - Ensuring that the remote sensing data analysis steps used 
in this protocol are not likely to introduce bias in the change results. 

2. Confidence vs. Level of Processing and Aggregation - Recognizing that a 
higher confidence can be assigned to lower-level, spectral trend (TC index) 
products averaged over a larger region compared to fractional change products for 
a specific site. 

3. Corroboration using Other Information Sources - Observations from 
published studies and other independent sources of information should be used to 
build confidence in the Landsat-detected changes.  These can, in some cases, be 
used to provide a local, qualitative validation.   

 
1. Robust Methodology 

 
Several features of the Landsat-based change method described in this protocol are 
designed to ensure that the Tasselled Cap trends and fractional changes represent real, 
long-term changes in reflectance and surface vegetation.  The table below summarizes 
potential sources of uncertainty introduced in the processing steps and how each is 
addressed by the protocol. 
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Potential Source of Bias or Uncertainty How Addressed in Protocol 
  
1. Spectral TC trends derived from Landsat 
Image stack 

 

(a) Bias due to Landsat sensor calibration drift  Calibration is performed using the most up-to-date 
coefficients that also provide compatibility between 
Landsat TM and ETM+ sensors 

(b) Bias due to sampling off-peak vegetation 
growing conditions 

Landsat scenes are screened if they deviate 
significantly from peak annual phenology, as 
measured using 10-day AVHRR-NDVI data  

(c) Bias due to large inter-annual variability in 
vegetation conditions caused by climate 

Variability is addressed through the use of robust 
trend analysis based on > 6 observations instead of a 
conventional, two-date change approach 

(d) Confidence that trends are real Compute non-parametric Mann-Kendal test for slope 
significance, compute 95% confidence limits for 
positive and negative slopes, comparison to trends 
derived from other sensors, such as AVHRR and 
MODIS 

2. Reference data used to anchor the fractional 
change models/products 

 

(a) 1-m2 plot measurements of ground cover 
fractions at a site may be highly variable 

Five plot measurements are averaged for each training 
site to reduce impact of natural variability and 
measurement error. 

(b) Tenuous to assume that high-resolution (1-4 
m) training imagery used to scale from plots to 
Landsat is composed of pure pixels 

Best recommended practice is to create a fractional 
high-resolution product (Quickbird or Ikonos) from 
plot data to train the Landsat fractional classifiers 

3. Regression tree models to predict vegetation 
fractions 

 

(a) Limited dimensionality of Landsat data (3 TC 
indices) not sufficient to separate 4-5 cover 
fractions  

This is the major motivation to use regression tree 
modeling, since unlike linear unmixing, is not 
constrained by the feature space dimensionality 

(b) Fractional RT models are derived 
independently for each class, then model outputs 
are combined and normalized to 100% (i.e. 
fractional model is not global)  
(c) Some fractions will have similar relationships 
to predictor variables, so their independence and 
separability using RT models can be uncertain.   

Investigate if certain fractions have similar 
relationships to spectral data 
 
Can aggregate predicted fractions (e.g. combine shrub, 
prostrate, and herb into vascular green vegetation) if 
their RT models behave similarly 
 
Can enter and normalize fractions in order from 
lowest to highest error. 

(d) Uncertainty in the sensitivity of RT model 
predictions – at what magnitude of change do we 
have confidence that changes are real? 

Assess RT models based on SE and r2 for a hold-out 
test sample.  This provides a pixel-level assessment of 
accuracy in relation to scaled-up plot data. 
When pixels are aggregated and averaged (e.g. by land 
cover or ecotype), random pixel errors will be 
averaged and approach zero.  Corroboration using 
other information sources. 

(e) Extrapolating RT models in time or space Shouldn’t apply RT models over large geographical 
areas where conditions may vary from training region.  
Must assume that temporal accuracy of RT models is 
similar to spatial accuracy – may not be valid if 
fundamentally new vegetation conditions arise. 
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2. Confidence vs. Level of Processing and Aggregation 
 
Two general guidelines for assessing the accuracy and reliability of the change products 
produced using this protocol are:  

1. The confidence of spatially aggregated results will be greater than that of pixel-
level results, and 

2. The confidence of the lower-level, spectral trend products will be greater than that 
of the fractional change products 

 
A separate set of TC trends is computed for each pixel’s database of Landsat observations 
using regression.  Each pixel location will therefore include a measurement of the error 
around these trends.  If the statistically significant (p<0.05) pixel trends are averaged over 
a larger area, for example within a park ecotype, one should expect that random pixel 
errors would also be averaged out and approach a value of zero.  We therefore 
recommend as a best practice that the change products be spatially averaged over similar 
units (land cover types, ecotypes, indicators) before being used for SOPR reporting. 
 
The spectral trend products are based on measuring physical reflectance changes over 
time and are subject to uncertainties described in section 1 of the table above.  The 
Tasselled Cap and NDVI index trends can be interpreted as physical changes to surface 
Greenness, Brightness, and Wetness with relatively high confidence.  There are numerous 
publications relating these indices to consistent types of changes occurring on the ground.  
For example, NDVI has been shown to strongly correlate with levels of aboveground 
plant phytomass in Arctic ecosystems. 
 
We therefore recommend that, for SOPR reporting, TC Greenness or NDVI can be 
reported quantitatively as a percentage change averaged over an indicator (e.g. 
tundra, wetlands).  Pixel-level information should not be used for reporting, but instead 
to provide guidance as to where the strongest surface changes are likely occurring for 
follow-up field investigations. 
 

 
 
The fractional change products, while containing more specific and useful information 
for EI monitoring, are derived by higher-level modeling of the Landsat spectral 
information and subject to additional uncertainties outlined in the above table.  Therefore, 
these products will likely have less accuracy and reliability than the TC trend products.  
A first-order estimate of the accuracy of the fractional change products can be obtained 

Torngat Mnts Example EI Measure: Trend in Average Greenness  

Tundra 
Indicator 

Greenness index in tundra has increased by 10% over 
the past 25 years.  The impact of this change is 
uncertain, since it suggests increasing productivity of 
tundra ecosystems but also may be causing shifts in 
bird species distributions.  
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from the average absolute % error specified by the RT models.  These errors were 
computed using a 20% hold-out portion of the training dataset. 
 
One potential means of estimating the accuracy of the fractional products is to conduct an 
analytical error budget that quantifies how error and uncertainty at each step (field, EO 
processing, EO-based modeling) propagate to the final product (e.g. Chen et al. 
ParkSPACE work package).  We opted not to conduct such an error analysis for this 
work package because of the difficulty in estimating field sampling error and 
representing how errors would propagate through space (e.g. aggregation and 
extrapolation), time (e.g. applying a spatial model to time trend), and complex algorithms 
chains.    
 
We recommend that, for SOPR reporting, the fractional change predictions can be 
averaged over an indicator and reported in a qualitative, directional manner.  For 
example, shrub fraction changes could be reported as increasing within the tundra 
indicator.  Again, pixel-level changes would be more appropriate for guide follow-up 
field work. 
 

 
 
 
3. Corroboration using Other Information Sources 
 
As mentioned previously, field measurements matching the spatial and temporal extents 
of the change products will normally not be available for validation.  However, a range of 
other information sources can be useful to corroborate the mapped changes, especially if 
there are available for ecologically similar, nearby locations.  If these independent 
sources of change information are found to be consistent with predictions from the 
remote sensing change products, this will serve to increase confidence in them.  Detailed 
examples of corroborating information sources can be found in the results documents for 
the four pilot parks and are summarized below. 
 

I. Repeat Vegetation Surveys – Some Arctic parks may have a small number of 
permanent vegetation sampling points.  For example, a research group from 
several Quebec universities has been measuring plant biomass in small plots on 
the coastal plain of Bylot Island (Sirmilik NP) since 1990.  Other parks may have 
a larger number of less detailed surveys, such as coastal plots in Ivvavik measured 
twice over 12-15 years by the Yukon Government. 

 

Ivvavik Example EI Measure: Trend in Shrub Cover 

Tundra 
Indicator 

Shrub cover in the coastal tundra appears to be 
increasing over the past 25 years.  This could negatively 
impact caribou forage quality if shrub growth is occurring 
at the expense of lichen and graminoid vegetation.  
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II. Historical Air Photos - The National Air Photo library archives over six million 
aerial photographs covering all of Canada and dating back to the 1920s.  Most of 
these can now be searched online using a range of criteria 
(http://airphotos.nrcan.gc.ca/photos_e.php).  We have found that comparison of 
large-scale air photos (e.g. ≥ 1:20k) from two dates can be useful for documenting 
the expansion of shrubs if they occur on a bright, relatively bare background.   

 
III. Repeat Oblique Photographs – Much of the evidence for shrub growth and 

expansion in Alaska comes from archived, oblique photographs captured from 
low-flying aircraft or the ground that were repeated specifically to document 
vegetation changes.  These photos may range in scale from vegetation plots to 
landscapes and come from a variety of sources, such as low-altitude surveys of 
corridors or tourists and local residents.  An effort is now underway for Torngat 
Mountains National Park to locate older photos of the landscape and repeat them. 

 
IV. Scientific Studies – Scientific reports and papers may be available that 

independently document large-scale changes occurring within or nearby Arctic 
national parks.  For example, we have located published studies related to coastal 
erosion, glacier recession, and vegetation damage that have all provided 
corroboration for the Landsat change results. 

 
V. Climate Data – Climate records for the period of Landsat observation can be 

examined to see if they are consistent with large-area vegetation changes 
documented using satellite.  For example, all four ParkSPACE pilot parks 
exhibited overall increases in greenness and predicted shrub cover.  They also all 
fall in regions with significant warming since 1985.  Several studies have 
demonstrated a positive correlation between summer temperature and growth of 
Arctic vascular vegetation.  Sources of historical temperature data include (a) 
NCEP-NCAR as 32 km gridded reanalysis product, (b) NASA Goddard as a 
coarser product interpolated from global weather station data 
(http://data.giss.nasa.gov/gistemp/), or (c) Environment Canada individual 
weather stations. 

 
VI. Other Satellite-based Observations – Most remote sensing-based evidence for 

greening in the Arctic comes from analysis of coarse resolution (250 m-1 km) 
satellite sensors, such as AVHRR, SPOT, and MODIS.  Observations and studies 
based on these platforms, although relatively coarse, can be compared for 
consistency to regions showing strong changes in the Landsat products.  

 
VII. Traditional Knowledge – Indigenous peoples, for example the Inuit Elders, have 

spent decades living on and travelling through Arctic parks and can provide 
valuable information of changes they have observed.  For example, increased 
shrub cover within Torngat Mountains NP that is suggested by the Landsat 
change analysis is supported observations made by Inuit Elders.    
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