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Preface 
 

This is a supplement to the “Let’s Talks about Climate Change: Atlantic Region” (Parker, 2017) 

report and is intended to support climate change discussions at Kejimkujik National Park and 

National Historic Site. 

 

Future climate projections are modelled with several different greenhouse gas concentration 

trajectories called Representative Concentration Pathways (RCP) (Vuuren et al., 2011). They 

describe possible climate futures and are named after respective radiative forcing values in the 

year 2100 relative to pre-industrial values (i.e., +2.6, +4.5 and +8.5 watts/m2). RCP 2.6 assumes 

we take action and greenhouse gas emissions peak in 2010-2020 and decline thereafter. RCP 4.5 

assumes emissions peak around 2040 and then decline. RCP 8.5 assumes we take no action and 

emissions continue to rise “status quo” throughout the 21st century. We are currently tracking 

RCP 8.5. 

 

This is a site focussed document and to understand the larger climate change context please 

review Canada’s Changing Climate assessment reports 

(http://www.nrcan.gc.ca/environment/impacts-adaptation/10029) and the Intergovernmental 

Panel on Climate Change assessment reports (e.g., IPCC, 2014). With respect to adaptation 

options, review Gross et al. (2016), Parker et al. (2018), or Rockman et al. (2016). 

 

 
 

 

 

Disclaimer 

Views, statements, findings and conclusions are solely those of the authors and do not 

necessarily reflect the views and policies of Parks Canada. Although the authors have made 

every effort to ensure that the information is accurate, complete and correct, neither Parks 

Canada nor the authors can guarantee its integrity. Readers are encouraged to verify with original 

sources.    

http://www.nrcan.gc.ca/environment/impacts-adaptation/10029
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Summary Climograph 
 

 

 
Climograph for Annapolis Royal region (RCP 8.5). Modelled monthly mean temperature and total precipitation 

for the 1976-2005 baseline and 2051-2080 future projection. Figure source: Climate Atlas of Canada 

(https://climateatlas.ca/). 

  

https://climateatlas.ca/
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1. Historic Climate  
 

Kejimkujik National Park and National Historic Site (hereafter Kejimkujik) covers 403 km2 in 

southwestern Nova Scotia. The park is composed of two sections, the larger is inland (381 km2) 

approximately 65 km from the Atlantic coast and 55 km from the Bay of Fundy, and the smaller 

section (Kejimkujik Seaside, 22 km2) is on the Atlantic coast (Parks Canada, 2010). Both 

Kejimkujik Seaside and Kejimkujik mainland are found within the Acadian Forest Ecozone 

(Rowe, 1972). 

 

The inland portion of Kejimkujik contains an extensive wetland and lake system with a 

maximum elevation of 190 m, and lies within the Western Ecoregion of Nova Scotia (Neily et 

al., 2017). For the 1971-2000 baseline, Kejimkujik Park Station (see plot below) recorded a 

mean annual temperature of 6.3°C, total annual precipitation of 1,399 mm (17% as snow; 13.9 

days ≥ 25mm) and 1,741 growing degree days (i.e., the sum of the number of degrees Celsius 

that each day’s mean temperature was above 5°C). The climate is marked by warm summers and 

mild, snowy winters. This mixedwood forest region is composed of spruce (Picea rubens, P. 

mariana, P. gluaca), Eastern Hemlock (Tsuga canadensis), White and Red Pine (Pinus strobus, 

P. resinosa), White Birch (Betula papyrifera), Red Maple (Acer rubrum), and Red Oak (Quercus 

rubra). The mainland portion of Kejimkujik is as far from the sea as is possible in Nova Scotia. 

This has created a distinct climatic zone within Atlantic Canada and accounts for a number of 

disjunct fauna and flora found in the area (e.g., Blanding’s Turtle (Emydoidea blandingii), 

Eastern Ribbonsnake (Thamnophis sauritus), Water Pennywort (Hydrocotyle umbellata), and 

southern flying squirrel (Glaucomys volans).  

 

Kejimkujik Seaside lies within the Atlantic Coastal Ecoregion of Nova Scotia (Neily et al., 

2017). For the 1971-2000 baseline, Milton-Liverpool station (closer to Kejimkujik Seaside, see 

plot below) recorded a mean annual temperature of 7.3°C, total annual precipitation of 1,647 mm 

(9.8% as snow; 20 days ≥ 25mm) and 1,926 growing degree days. This ecoregion covers a 

narrow coastal strip strongly influenced by the Atlantic Ocean. The region is exposed to high 

winds, high humidity, and fog during summer and fall and is slow to warm up in spring. It is 

marked by cool, wet summers and mild, wet winters with most precipitation falling as rain. 

Kejimkujik Seaside contains two lagoon ecosystems; St. Catherine’s Estuary and Little Port Joli. 

Barrier beaches protect the saltmarshes, tidal mudflats and eel grass (Zostera marina) beds. 

 



6 

 

 
Climate “normals” (1971-2000) for Kejimkujik Park Station. Figure source: Environment and Climate Change 

Canada (http://climate.weather.gc.ca/climate_normals/). 

 

 

 
Climate “normals” (1971-2000) for Liverpool- Milton Station (close to Kejimkujik Seaside). Figure source: 

Environment and Climate Change Canada (http://climate.weather.gc.ca/climate_normals/). 
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1.1 Temperature  
 

Halifax (8202251) is the closest meteorological station with long-term temperature data (ECCC, 

2017). Trends from 1872 to 2012 determined using a generalized linear model (R Core Team, 

2017) including 95% confidence intervals. “*” = statistically significant trend (P<0.05). 

 

 
 

 
Liverpool mean annual and seasonal temperature. A statistically significant (P<0.05) increase observed in mean 

annual and seasonal temperatures. Mean annual temperature has increased by 1.6°C since 1872. Of all the seasons, 

autumn (Sep, Oct, Nov) temperature has increased the greatest, 2°C since 1872.   

*

*

**

*
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Mean annual and seasonal temperature trends (˚C) for Kejimkujik for 1948-2016. Based on Canadian gridded 

data (CANGRD) it represents the change in temperature over the period of record (1950-2016). Data source: 

https://climate-change.canada.ca/climate-data/#/historical-gridded-data. 
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1.2 Precipitation 
 

St. Margaret’s Bay (8204800) is the closest meteorological station with long-term precipitation 

data (ECCC, 2017). Trends from 1923 to 2017 determined using a generalized linear model (R 

Core Team, 2017) including 95% confidence intervals. “*” = statistically significant trend 

(P<0.05). 

 

 
 

 
St. Margaret’s Bay total annual and seasonal precipitation. Total annual precipitation demonstrated a 

statistically significant increase (P<0.05), +242 mm (18%) since 1923. Winter (Dec, Jan, Feb) and spring (Mar, Apr, 

*

**

**
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May) demonstrated a statistically significant (P<0.05) increase, the greatest being observed for spring, +65 mm 

(20%). 

 
St. Margaret’s Bay total annual rain demonstrated a statistically significant (P<0.05) increase since 1923, +277 

mm (+26%).  
 

 
St. Margaret’s Bay total annual snow demonstrated a statistically significant (P<0.05) decrease since 1923, -71 

mm (-27%). 
 

*

*
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Total annual and seasonal precipitation trends (%) for Kejimkujik for 1948-2012. Based on Canadian gridded 

data (CANGRD) the relative trends reflect the percent change in total precipitation over the period of record (1948-

2012). Data source: https://climate-change.canada.ca/climate-data/#/historical-gridded-data.  
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1.3 Surface Wind Speed 
 

Western Head (8206240) is the closest meteorological station with long-term wind data (ECCC, 

2017). Trends from 1960 to 2014 determined using a generalized linear model (R Core Team, 

2017) including 95% confidence intervals. “*” = statistically significant trend (P<0.05). 

 

 
Western Head mean annual and seasonal wind speeds. Mean annual wind speeds have demonstrated a 

statistically significant (P<0.05) decrease, -6.3 km/hr (-29%) since 1960. All seasons demonstrated a statistically 

significant (P<0.05) decrease, the greatest being observed for spring, -7.5 km/hr (-32%) since 1960.  

*

**

**
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2. Projected Climate Trends 
 

2.1 Temperature  
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Projected mean annual temperature increase for Kejimkujik from a 1980-2010 baseline. Composite projection 

of CanESM2, CESM1CAM5, HADGEM2ES and MIROCESM. Data source: Natural Resources Canada, Canadian 

Forest Service, http://cfs.nrcan.gc.ca/projects/3 (Price et al., 2011). Depending on the RCP scenario, mean annual 

temperatures are projected to increase 2.5 to 6.0 °C by 2071-2100. 
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The frost-free season (days) for Annapolis Royal region is projected to increase by 48.9 days from the 1976-2005 

baseline by 2051-2080 (https://climateatlas.ca/). Frost-free season approximates the length of growing season (i.e., 

no freezing temperatures to kill or damage plants). 

 

 
Very hot days (+30˚C) for Annapolis Royal region are projected to increase from 1.2 days/year from the 1976-2005 

baseline to 13.5 days/year by 2051-2080 (https://climateatlas.ca/).  



15 

 

 

2.2 Precipitation 
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Projected total annual precipitation change for Kejimkujik from a 1980-2010 baseline. Composite projection 

of four spatially interpolated downscaled Global Circulation Models: CanESM2, CESM1CAM5, HADGEM2ES 

and MIROCESM. Data source Natural Resources Canada, Canadian Forest Service, http://cfs.nrcan.gc.ca/projects/3 

(Price et al., 2011). Depending on the RCP (2.6, 4.5 or 8.5) scenario, total annual precipitation is projected to 

increase 100 to 175 mm by 2071-2100. 
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Rainfall Intensity, Duration and Frequency (IDF) 

 

These rainfall IDF values are calculated with IDF_CC Tool 3.0 (http://www.idf-cc-uwo.ca/) 

using Generalized Extreme Values (Simonovic et al., 2017). 

 
Baseline total precipitation amounts (mm) for Western Head from 1973-2007. 

 
 

Projected (2050-2100) precipitation (mm) for Western Head using an ensemble of models and RCP 4.5.  

 
 

Projected (2050-2100) precipitation (mm) for Western Head using an ensemble of models and RCP 8.5. 

 
 

Western Head IDF observations and projections. Observe that today’s “one in 100 year” rainfall event (i.e., 

48.31 mm/hr) is projected to be closer to a “one in 10 year” event by 2050-2100 and the future “one in 100 year” 

rainfall event is projected to increase in intensity (i.e., 67.43 – 69.56 mm/hr). In addition, the Climate Atlas of 

Canada (https://climateatlas.ca/) projects that the number of heavy precipitation days (>20 mm) will increase from 

the 1976-2005 baseline of 16.5 days to 19.6 days (+3 days) by 2051-2080. 

 



 

 

3. Climate Change Impacts 
 

3.1 Relative Sea Level Rise 

 

Relative sea level in the region is increasing due to the combined effect of sea level rise (~1.6 

mm/yr) and land subsidence (~1.6 mm/yr). For example, between 1900 and 2016 sea level at 

Halifax increased by 3.28 ± 0.19 mm/yr (+38 cm) (http://www.psmsl.org/products/trends/).    

 

Vertical allowance for Yarmouth were acquired from the Canadian Extreme Water Level 

Adaptation Tool (CAN-EWLAT, http://www.bio.gc.ca/science/data-donnees/index-en.php). The 

vertical allowances are “recommended changes in the elevation of coastal infrastructure required 

to maintain the current level of flooding risk in a future scenario of sea level rise”. These 

estimates are based on a future projection of regional sea level rise using the RCP 4.5 and RCP 

8.5 scenarios and the historical water level records, including both tides and storm surge. The 

historical records do not incorporate predicted changes in storm tides.   

 

 

 
Yarmouth, NS projected vertical allowance of 73 to 101 cm by 2100 (CAN-EWLAT).  

 

 

Comparing historic photos from 1927 until 2007, Bourdeau (2010) estimated that barrier beaches 

at Kejimkujik Seaside have moved landward. St Catherine’s River beach moved inland at a rate 

of 1.96 m/year and Little Port Joli moved at a rate of 0.2 m/year. The total lagoon area has also 

changed with the landward movement of the barrier beaches. St. Catherine’s River lagoon 

decreased by 22% and Little Port Joli lagoon decreased by 2.2%. Furthermore, Bourdeau (2009) 

modelled the impact of a 0.69 m increase in sea level by 2100 at the Kejimkujik Seaside. The 

exercise demonstrated a high risk of flooding for the lagoons in association with spring tides and 

storm surges and some uncertainty as to whether saltmarsh and eel grass beds will be able to 

migrate to the potential new locations.  
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Projected flood mapping for Kejimkujik Seaside for 2050. Prepared by Bourdeau (2009). 
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Coastal sensitivity to climate change based on coastal materials, landforms, relief, ground ice, wave height, tidal 

range, recent trends in sea ice concentration, and projected sea level rise to 2050. Data provided by Natural 

Resources Canada (Couture and Manson, 2016).  
 

 

3.2 Species and Ecosystems 
 

In general, the effects of climate change on biodiversity include: shifts in species distribution; 

changes in phenology; decoupling of interactions (plant-pollinator); reductions in population 

size; species extinction and extirpation; habitat loss; increased disease and spread of invasive 

species; competitive exclusion; and, change to ecosystem services (Nantel et al., 2014; Nituch 

and Bowman, 2013). Some more specific regional effects include:  

 

 Loss of boreal tree species, such as Balsam Fir, are projected due to climate change 

(Bourque and Hassan, 2008; Taylor et al., 2017).  

 Increasing incidences of Lyme disease (tick vector) have been linked to climate change 

(Eisen et al., 2016; Nova Scotia, 2012). Climatic conditions may become more 

favourable for some mosquito vector diseases (e.g., West Nile Virus) in the future as well 

(Wudel and Shadabi, 2016).   

 Earlier peaks in insect populations and plant biomass have been observed and may 

mismatch with migrant bird hatchling growth and development (e.g., asynchrony 

between wood warbler and eastern spruce budworm) (Knudsen et al., 2011; Nituch and 

Bowman, 2013). 

 Climate change will influence environmental chemistry and pollutants, including an 

exacerbation of the effects of acid deposition (lower pH due to higher CO2 levels), 

nutrient loading (precipitation events), and mercury toxicity (released under anoxic 

conditions, warmer waters increase the rate of methylation) (Michalak, 2016; Noyes et 
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al., 2009). This may heighten environmental toxicity concerns at Kejimkujik (e.g., 

Clayden et al., 2013; Korosi et al., 2013; Little et al., 2015; Scheuhammer et al., 2016). 

 A vulnerability assessment by Gomer (1999) identified several species threatened by 

climate change; Red Spruce (Picea rubens), Striped Maple (Acer pensylvanicum), Sugar 

Maple (Acer saccharum), Eastern Hemlock (Tsuga canadensis), American Beech (Fagus 

grandifolia), several disjunct coastal plain plants, and the American Marten (Martes 

americana). 

 A total of 31 species were assessed for vulnerability by Osawa (2015) under a severe 

climate change scenario by 2080. Species highlighted as having a high vulnerability 

included, boreal tree species (i.e., Balsam Fir (Abies balsamea) and Black Spruce (Picea 

mariana)), Brook Trout, American Marten, and Mainland Moose (Alces alces 

americana).  Species with high adaptability included Coyote (Canis latrans), White 

tailed Deer (Odocoileus virginianus), Fisher (Martes pennanti), Beaver (Castor 

canadensis) and hardwood species (e.g., Red Oak (Quercus rubra), Ironwood (Ostrya 

virginiana), and Red Maple (Acer rubrum)).  

 Increased winter temperatures may make conditions favourable for the survival and 

impact of some forest insects (native and non-native). For instance, Emerald Ash Borer 

(Agrilus planipennis) was detected near Halifax in 2018 and Southern Pine Beetle 

(Dendroctonus frontalis) is moving northward (Williams and Liebhold, 2002).  

 Eastern Hemlock are expected to decline as Hemlock Woolly Adelgid (HWA) spreads 

throughout southeastern Nova Scotia. It was discovered in Kejimkujik in 2018 and is 

expected to result in 80% mortality of Eastern Hemlock over the next 10 years. HWA is 

sensitive to cold winter temperatures, particularly fluctuations in late season (February 

and March). With warming winters HWA is projected to expand northward (Paradis et 

al., 2008). 

 Ice cover in the Northeast has decreased in the past 150 years (Magnuson et al., 2000). 

Sapna et al. (2019) project that southern Nova Scotia will experience intermittent winter 

ice cover with an increase of + 2°C in air temperature. Less lake ice cover may result in 

lower lake levels due to increased evaporation rates. Lakes with less ice cover also tend 

to be warmer in the summer with high primary productivity and algae biomass 

(Weyhenmeyer et al., 2008).  

 An assessment of fishes in Nova Scotia reported cold-water species (e.g., Atlantic 

Whitefish (Coregonus huntsman), Brook Trout, Atlantic Salmon (Salmo salar)) are very 

susceptible to warming trends (Kanno and Beazley, 2004). Summer stream temperatures 

in Kejimkujik streams are often well above the temperature stress thresholds identified 

for Brook Trout (>20°C).     

 Chain Pickerel (Esox niger) (discovered in 2018) and Smallmouth Bass (Micropterus 

dolomieui) are invasive fishes in Kejimkujik. Both are tolerant of warm waters and are 

expected to displace Brook Trout though direct predation and reduction of prey fishes 

(Davis et al., 2017; Loppnow et al., 2013). 

 Eelgrass beds at Kejimkujik Seaside are expected to be negatively impacted by increases 

in summer temperatures (>30°C) resulting in lower dissolved oxygen concentrations and 

lower above ground shoot production (Bintz et al., 2003). Warmer spring and fall 

temperatures are also expected to be favourable for invasive Green Crab and may negate 

the benefits of a longer growing period for Eelgrass and Soft-shelled Clams. 
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Plant Hardiness 

 

Plant Hardiness is associated with probabilities of plant survival in relation to average, broad 

scale climatic conditions. As the climate changes, habitat suitability for plant species also 

changes. Natural Resources Canada maintains a database that includes future projections of plant 

hardiness (http://www.planthardiness.gc.ca/).  
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Change in core and full range for select tree species from a 1971-2000 baseline to 2071-2100 future projection (RCP 

8.5) based on plant hardiness.   
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Climate Velocity 

AdaptWest (https://adaptwest.databasin.org/) provides integrative tools that can inform 

conservation planning, including the following analysis on climate velocity.  
 

 
Origin and destination of the future climate type for Kejimkujik (2080’s, RCP 8.5) determined using the AdaptWest 

Climate Displacement Tool, https://adaptwest.databasin.org/pages/climate-displacement-protected-areas. Climate 

velocity data from AdaptWest further confirms that the climate type is outgoing (forward) at approximately 4 km/yr 

and incoming (backward) at approximately 14 km/yr (RCP 8.5). In other words, that is the rate an organism has to 

migrate to maintain constant climate conditions. 

 

 

3.3 Wildfire 
 

Due to positive trends in drying and escalation of potential fire severity and intensity, a moderate 

increase in wildfire risk is projected for this area (Whitman et al., 2015). 
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Projected increase in wildfire season for Kejimkujik. Increased length in days from baseline (1981-2010) under 

RCP 4.5 and RCP 8.5 scenarios. An increase of approximately 14 days is projected by 2071-2100. Data source: 

Natural Resources Canada, http://cfs.nrcan.gc.ca/fc-data-catalogue. 
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 Lightening has a positive correlation with temperature, increasing risk of wildfire 

ignitions (e.g., Veraverbeke et al., 2017; Woolford et al., 2014).  

 Flannigan et al. (2016) demonstrate that seasonal precipitation must increase 15% to 

offset every 1˚C rise in temperature. 

 
 

3.4 Cultural Resources 
 

Kejimkujik is one of the few National Parks where a large portion is also designated as a 

National Historic Site. This is in recognition of the strong connection the Mi’kmaq people have 

to Kejimkujik and have maintained since time immemorial. The cultural landscape includes 

waterways, encampments, burial grounds, lakes, wetlands and forests, all of which will be 

affected by climate change. The Mi’kmaq ways of thinking, including Etuaptmumk (“two-eyed 

seeing”) and Netukulimk (“taking only what you need”), will be important for informing how 

Kejimkujik responds to the impacts of climate change.  

 

Examples of climate change impacts to cultural resources in Kejimkujik include: 

 Population decrease or loss of harvestable animals that are sensitive to warming 

temperatures (e.g., Mainland Moose, Brook Trout). 

 Decrease or loss of culturally important plant species (e.g., White Birch, medicinal 

plants). 

Decrease or loss of culturally significant forest types, including Hemlock forests 

(Hemlock Woolly Adelgid impacts) and ash species (EAB and drying impacts on 

forested wetlands).  

 Petroglyphs along Kejimkujik lake shores may be affected by changes in environmental 

conditions including water chemistry, wave action, and period of wetness (Marissa et al., 

2016; Parks Canada, 2017b).  

 Increased frequency of storms and wind events could result in higher rates of erosion at 

known and unknown archeological sites inside streams (e.g., eel weirs) and beside stream 

banks. 

 Sea level rise will result in an increased rate of erosion and exposure of known and 

unknown archeological sites along the coast (Melnick et al., 2016). 

 

 
3.5 Visitor Experience 
 

It is expected that visitor patterns will change due to an earlier spring and warmer summer and 

autumn conditions.  

 Maximum and minimum temperature were determined to be the most influential climate 

variable for predicting visitation in 15 national parks (these parks accounted for 86% of 

Parks Canada’s visitation at the time) (Jones and Scott, 2006). 

 The US National Park Service examined visitation response across their network and 

found that it generally increased as mean monthly temperatures increased, but decreased 

strongly as temperatures exceeded 25˚C. Future climate/visitation projections suggest that 
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there is a complex and cascading effect, and a consequent need to develop park and 

neighbouring community adaptation strategies (Fisichelli et al., 2015). 

 Hewer and Gough (2018) reviewed 30 years of climate change impacts on outdoor 

recreation in Canada, including increased risks to cold-weather activities and 

opportunities for warm weather activities. 

 Decreased snowpack will negatively impact winter recreational activities such as 

snowshoeing, skiing, ice fishing, ice travel and snowmobiling.  

 A longer and more intense fire season will affect visitor safety and experience (e.g., area 

closures, no campfires).  

 Extreme weather events are the top risk globally in terms of likelihood and the second 

highest risk in terms of impact (after weapons of mass destruction) (World Economic 

Forum, 2018). Intense rainfall, lightning storms, hail, extreme winds and wildfire events 

are all potential hazards whose risks are projected to increase (e.g., Brimelow et al., 

2017; Cheng et al., 2012; IPCC, 2012). Besides a potential role in emergency 

preparedness and response, protected areas are increasingly being recognized as a 

“natural solution” in terms of disaster risk reduction (e.g., flood control, protection from 

storm surge, etc.) (e.g., Dudley et al., 2015; Lo, 2016; Murti and Buyck, 2014). 

 More intense, frequent and longer heat waves during the summer could increase the 

pressure on Kejimkujik as people leave urban centres to cool off in lakes and oceans 

(Luber and McGeehin, 2004; 2008; Meehl and Tebaldi, 2004).  

 Higher UV radiation under future ozone depletion (Bais et al., 2015; Sitch et al., 2007). 

 

Climate change is a theme in Parks Canada’s communication and interpretation programs (e.g., 

https://www.pc.gc.ca/en/nature/science/climat-climate). By engaging and inspiring the public, 

Parks Canada is able to build support for its mandate and adaptation actions. A place for “natural 

solutions” is a concept used to frame and present Parks Canada’s response to climate change 

mitigation and adaptation, as it highlights the importance and effectiveness of ecosystem-based 

approaches (e.g., CPC, 2013; NAWPA, 2012) 

 

"The changing climate surrounds us, compelling us to tell the story" (US NPS). Of related 

interest, is the US National Park Service climate change interpretation and education strategy 

(US NPS, 2016) and climate change interpreter training 

(http://idp.eppley.org/training/specialist/interpreting-climate-change). Parks Canada staff have 

found this training to be very helpful. 

 

 

3.6 Assets and Infrastructure 
 

The impacts to Canada’s assets and infrastructure from climate change are well documented 

(e.g., Boyle et al., 2013; Canada, 2017; Palko and Lemmen, 2017; Warren and Lemmen, 2014) 

and are explicitly mentioned as a concern in Parks Canada’s Departmental Plan (Parks Canada, 

2017a). Although an assessment of vulnerabilities and risks to infrastructure has not been 

completed at Kejimkujik, in light of the information in this report, expected concerns could 

include: 

https://www.pc.gc.ca/en/nature/science/climat-climate
https://www.nps.gov/subjects/climatechange/nccies.htm
http://idp.eppley.org/training/specialist/interpreting-climate-change
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 Flooding from intense rainfall and winter rain events, could overwhelming surface 

drainage capacity, septic beds, particularly undersized or debris filled culverts, bridges  

and damaging buildings facilities, boardwalks, bridges, and washing out roads, etc… 

 Local flood modelling for the town of Bridgewater predicted an increase of 16% in 

discharge for the LaHave River for flood events occurring at 10 year intervals rather than 

at every 50 years (Webster et al., 2014).  

 Sea level rise and storm surge will result increased erosion and flooding to hiking trails at 

the Kejimkujik Seaside.  

 Freezing rain or hail damage to buildings and power/communication lines. 

 Longer wildfire season and more intense burns, especially given the high urban interface.  

 Longer seasonal use of trails and roads by visitors. May be less frost damage to roads in 

milder winters.  

 Increased temperatures could lead to premature weathering. Similarly, increased spring 

rains could lead to premature weathering and deterioration (e.g., building foundations, 

corrosion, and mold).  

 Summer drought increases water demands and may exceed system capacity. 

 The energy demands for cooling buildings will increase. 

 

An assessment of greenhouse gas (GHG) emissions was not in the scope of this report. However, 

it is important to observe that throughout the document different RCP scenarios were presented 

and if we meet (and celebrate) RCP 2.6 or continue to track (and mourn) RCP 8.5, depends 

entirely on our actions to address and reduce GHG emissions today. Federally the government is 

committing to reducing GHG emissions by 80% below 2005 levels by 2050 

(https://www.canada.ca/en/treasury-board-secretariat/services/innovation/greening-

government/strategy.html). Also see Parks Canada’s 2015 Master Plan to reduce GHG emissions 

(Parks Canada, 2015).  

 

 
  

https://www.canada.ca/en/treasury-board-secretariat/services/innovation/greening-government/strategy.html
https://www.canada.ca/en/treasury-board-secretariat/services/innovation/greening-government/strategy.html
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3.7 Related Information 
 

Climate Resilient Landscape 
 

 
The Nature Conservancy’s Resilient Land Mapping Tool (Anderson et al., 2016; 

http://maps.tnc.org/resilientland/). Kejimkujik and other protected areas mapped with black line. Resilient areas 

include areas of landscape diversity (micro-climates) and local connectedness. Climate corridors include narrow 

conduits, highly concentrated flow, e.g., riparian channels, linear ridge lines. Climate flow zones include high level 

plant and animal movement that is less concentrated than corridors, e.g., intact forests. 

 

 Two Countries, One Forest is a Canada-U.S. collaborative of conservation 

organizations, researchers, foundations and conservation-minded individuals focused on 

the protection, conservation and restoration of the Northern Appalachian/Acadian 

ecoregion. The website includes publications, maps and data related to climate change 

and landscape management, https://programs.wcs.org/2c1forest/. 

 

 Southwest Nova Biosphere Reserve is a UNESCO designation and promotes 

conservation and sustainable development within the 5 counties of Annapolis, Digby, 

Yarmouth, Shelburne and Queens. The association is currently working on a science atlas 

for the reserve, http://swnovabiosphere.ca/. 

 

 

  

https://programs.wcs.org/2c1forest/
http://swnovabiosphere.ca/
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Appendix 1. Additional Climate Trends 
 

 
Liverpool mean monthly temperature. All months demonstrated a statistically significant (P<0.05) increase. Dec 

demonstrated the greatest increase, 2.4°C since 1872.  
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St. Margaret’s Bay total monthly precipitation. All months except Feb and Aug demonstrated a slight increase in 

total monthly precipitation, Nov and Dec demonstrated a statistically significant increase (P<0.05) since 1923. The 

greatest increase being observed in Nov, +55 mm (+48%).  
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Western Head mean monthly wind speeds. All mean monthly wind speeds have demonstrated a statistically 

significant (P<0.05) decrease since 1960, the being observed for May, -7.6 km/hr (-36%). 
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Appendix 2. Model Scatterplots for Temperature and Precipitation  
 

 
 

  
 

  
 

Climate models for Annapolis Royal region. Each point represents a single model-simulated 

temperature/precipitation response to the RCP 8.5 scenario. Statistically downscaled data (Bias Corrected Spatial 

Disaggregation; BCSD) derived from 12 CMIP5 global climate models: ACCESS1.0, CanESM2, CCSM4, CNRM-

CM5, CSIRO-Mk3-6.0, GFDL-ESM2G, HadGEM2-CC, HadGEM2-LR, INM-CM4, MPI-ESM-LR, MRI-CGCM3, 

MIROC5 (PCIC, 2014). All the models project warmer conditions and most project wetter conditions.  
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Appendix 3. Near-Surface Wind Speed Projections 
 

 
CMIP5 climate model (http://climate-scenarios.canada.ca/?page=download-cmip5) project decrease in wind speed 

in 2046-2065 from 1986-2005 reference period (RCP 8.5). 

 


