
J ourna/ ofC/aeju/ov, Vol. '3, No. 68,1974 

THERM AL EFFECTS OF CREV ASSI N G O N STEELE GLA C I E R, 
YU KO N TERRITORY, CANA D A 

By GARY T. J AR V IS and GARRY K . C. CLARKE 

(Department of Geophysics and Astronomy, U niversity of British Columbia, Vancouver 8, 
British Columbia, Canada ) 

ABSTRACT. I ce tempera ture measurements have been mad e in Steeie Glacier to a d epth of 11 4 m . All 
measured tempera tures were below 0° C, the coldest being - 6.5° C a t a d epth o f 11 4 m. T he tempera ture 
profi le indicates an a nomalously warm layer of ice between 30 m a nd 50 m, which is probably due to the 
freezing of water in crevasses opened during the 1965- 66 surge. A two-dimensional mod el of a cold glacier 
with par t ially water-filled crevasses predicts tempera ture profi les very similar to tha t observed . 

R ESUME. Effet thermique de la presence de crevasses sur le S teele Glacier, Territoire du Y ukon, Canada. Des mesures 
de temperatures ont e te fa ites sur le Steele G lacier j usqu 'a une profondeur de 11 4 m. Toutes les tem peratures 
mesurees e taien t nega tives, les plus froides etan t - 6,5° C a une profond eur de 11 4 m. Le profi l des tempera
tures montre un reseau de glace a normalement cha ud entre 30 et 50 m, qui est proba blement dtl au regel 
d 'eau da ns les crevasses ouvertes pendan t la crue de 1965- 66. U n mod eie bidimensionnel d e glacier froid 
avec d es crevasses par t iellement remplies d 'eau fa it p revoir d es profils d e tempera ture tres semblables a ceux 
observes. 

ZUSAMMENFASSUNG. T hermische Wirkung der Spaltenbildung am Steele Glacier, Yukon T erritory, Kanada. 
Im Steele Glacier wurden Eistempera turen bis zu einer Tiefe von 11 4 m gemessen. Alle T empera turen lagen 
unter 0° C, die tiefste betrug -6,5° C in 114 m Tiefe. Das T empera turprofil weist auf eine ungewohnl ich 
warme Eisschicht zwischen 30 m und 50 m hin, die vermutlich auf d as Gefrieren von Wasser in Spalten 
zuruckzufuhren ist, die sich wahrend des Ausbruches von 1965/66 geoffnet haben. Ein zweidimensionale5 
M odell eines ka lten Gletschers mit teilweise wassergefiillten Spalten lass t T emperaturprofil e erwarten, die 
dem beobachteten sehr a hnlich sind. 

I NTROD UCTION 

The Steele Glacier is a large valley glacier in the St Elias Mountains, Yukon T erritory, 
Canada. Explorations by Wood ( 1936) a nd Sharp (1951 ) indicate that for at leas t thirty 
years prior to 1965, the 10- 15 km lower zone was inactive and provided a safe, relatively 
uncrevassed route into the Icefield Ranges. Austin Post finds photographic evidence for " an 
extensive surge which severely fractured the surface of the upper glacier" around 1940 and 
" must have faded out near the ' big bend ' of the Steele", some 12 km from the present terminus 
(personal communication from M . F. M eier) . By summer 1966 Steele Glacier was in the 
midst of a spectacular surge which displaced surface features 8 km within one year. Pre
monitory signs, apparent on aerial photographs, led Post in 1960 to predict the Steele's surge, 
but unfortunately none witnessed the onset of the active phase. Stanley (1969) and M eier 
(personal communication) refer to aerial photographs, ta ken by Post in the summer of 1965, 
which show extensive crevassing of the glacier surface, and indicate the advance probably 
began in 1965 . From August 1966 the surge is well documented (Bayrock, 1967 ; Stanley, 
1969 ; Wood, 1967[a], [b] ; T homson, 1972 ) a nd Wood (1972) has published an historical 
review containing striking pre-surge and post-surge photographs. 

The cause of the Steele surge is unknown, but as the nearby Rusty a nd Trapridge G laciers 
appear to surge by a thermal instability mechanism , temperature measurements in Steele 
Glacier could prove diagnostic. Consequently in July 1972 a reconnaissance program of ice
temperature measuremen t was begun and a single hole was thermally d rilled to a dep th of 
I 14 m in the cen tral region of the glacier (Fig. I ) . T wo eight-conductor cables attached to the 
power cable of the thermal probe carried thirteen calibrated thermistors to depths ranging 
from 25 m to 11 4 m . T he drilling a nd temperature measurement procedures were essentia ll y 
the same as those described by Classen and Clarke (1972) . T hermistor resistances were 
measured ten days after the termina tion of drilling and converted to ice temperatures. 

243 

Downloaded from https://www.cambridge.org/core. 26 Jun 2021 at 16:27:09, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


JO U RNAL OF GLACIOLOGY 

Fig. 1. Portion of Canadian Government air photograph A21523-73 showing confluence region of Steele and Hodgson Glaciers. 
Inset s.~ows details of crevasses near drilling site. 
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Cooling curves obtained from holes drilled with thermal probes of various diameters on 
the nearby Trapridge Glacier show that thermal equilibrium is not reached in ten days. 
To correct the measured temperatures, theoretical cooling curves were computed . The 
diffusion equation was solved in cylindrical polar coordinates, by finite-difference m ethods, 
for a water-filled cylindrical hole in cold ice (Appendix A). The solution yields both hole 
closure and ice temperature as a function of time, and the resulting cooling curves can be 
compared to observational data if the initial hole radius is known. The thel'mal probe radius 
.is not a good estimate of the initial hole radius because the probe effi ciency is not 100% . A 
better estimate of this radius is obtained by assuming that all the thermal energy from the 
probe is used to melt ice. For drilling speed Vp the radius of the hole re can be calculated as 

re = (P/Lp7TVp)~ 

where P is the input power to the prob::::, L the latent heat of fusion (3.337 X 105 J /kg), and p 
the ice density. As both P and Vp were monitored continuously during fi eld operations, the 
appropriate values of re can be computed at each thermistor depth . P a nd Vp did not change 
rapidly with probe depth so that in the neighbourhood of each thermistor the hole was nearly 
cylindrical with re given by Equati on ( I). Comparisons of theoretical cooling curves and data 
recorded at three sites on Trapridge Glacier (Jarvis, unpublished ) show good agreem ent, 
and the corrected Steele Glacier temperatures are expected to be within ± 0.2 ° C of the true 
equilibrium values. The ob erved ten-day temperatures and the values co rrected to equili
brium are given in Table 1. 

TABLE I. STEELE GLACIER TEMPERATURE DATA 

Thermistor M easured Corrected 
depth ice temperature temperature 

m °C °C 

26 - 1.54 - 1.85 
33 - 0 .96 - 1·44 
40 - 1.14 - 1·55 
47 - 0·54 - 1.36 
54 - 1.38 - I.75 
61 - 2.14 - 2-45 
70 - 3.90 - 4. 11 
82 - 4·77 - 4.98 
92 - 5·43 - 5.65 

100 - 5.88 - 6. 10 
106 - 6. 13 - 6·35 
11 2 - 6.4 1 - 6.63 
11 4 - 6-46 - 6.68 

In the region of the drill site, the upper 114 m of the glacier is cold but the temperature 
profile is unusual and unexpected . Below 50 m the ice cools with d epth suggesting the 
presence of a hea t source near 40 m. No similar anomaly has been observed on the nearby 
Rusty and Trapridge Glaciers, two surge-type glaciers in the quiescent phase (Classen and 
C larke, 1971 ; Clarke and Goodman, in press; Jarvis and Clarke, unpublished ) . Geo
thermal heat causes the temperature in these cold glaciers to increase with depth. Thus the 
anomaly does not appear to refl ect a regional climatic amelioration but is probably a conse
quence of the Steele Glacier 's most recent surge. The ice thickness is thought to be consider
ably greater than 114 m , so a continued temperature decrease to the glacier bed seems 
unlikely. If one makes the reasonable assumption that prior to the surge the temperature 
increased monotonically with depth, the upper 114 m must have been colder than - 6.5 0 C 
before the advance began. Measurements on the Rusty and Trapridge Glaciers suggest that 
_ 8.0 0 C is a good estimate of the m ean annual surface temperature. 
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The apparent heat source near 40 m must be localized in the vertical sense and be of 
sufficient strength to have maintained the observed anomaly for the six or seven years since 
the surge onset. Available energy sources are internal viscous heating, fri ction from sliding 
along shear planes, and internal water cavities. Thermal anomalies might also be generated 
by advective heat transfer or large displacem ents along shear planes . Viscous heating and 
sliding fri ction are insufficient to produce the observed effect. Aerial photographs analyzed 
by Stanley (1969) show that the drill site was in a zone of surface lowering and active exten
sional flow throughout the surge so that neither advection nor ice displacem ent along shear 
planes could account for the anomalously warm temperatures near 40 m . (Even in a region 
of passive compressive flow a temperature anomaly of 6.0 0 C would require an unreasonably 
large upward mass transport.) W e therefore conclude that englacia l water cavities are the 
most probable energy source. 

During the Steele Glacier surge, crevasses as wide as 20 m and as deep as 100 m were not 
uncommon. Since extensive crevassing reduces albedo and inhibits surface run-off, large 
quantities of melt-water can enter newly formed crevasses and gain access to considerable 
depths within the glacier. Collins (Nielsen, 1969, discussion on p. 960) remarked that this 
should have a noticeable effect on the temperature of a cold surge-type glacier and speculated 
that on som e surging glaciers water might even be admitted to the glacier bed. Our observa
tions support the first suggestion but not the latter. 

CREVASSE MODEL 

To evaluate the thermal effects of trapped water in a cold crevassed glacier, a two
dimensional, ti me-dependent numerical model was developed . The ice temperature T was 
assumed to be a function of the space variables x, m easured in the direction of flow, and y, 
the d epth m easured perpendicular to the glacier surface. Prior to the surge onset at t = 0 

the glacier surface was assumed to be a plane maintained at a temperature which varied 
sinusoidally with time. (As might be expected the time-dependence of the surface boundary 
condition played a negligible role in the final results except near the surface- air boundaries.) 
The temperature at a depth d* far below the glacier surface was held constant at T d • There
fore the pre-surge temperature profile is linear with d epth except near the glacier surface, 
and the temperature gradient is simply the apparent geothermal gradient. 

At the surge onset, severe crevassing of the upper surface occurs, allowing melt water 
to partially fill the crevasses. Both the crevasse formation and water filling were assumed to 
occur instantaneously at t = o. This assumption is justified if one is interested in ice tempera
tures several years after the surge has terminated . By that time the exact details of crevasse 
forma tion and water filling have an insignificant effec t on the observed temperatures. For 
simplicity the crevasse field was assumed to be spatially periodic with infinitely long, symmetric 
crevasses at constant separation (Fig. 2). The initial shape of each crevasse was taken as a 
triangular wedge, although freezing of the trapped water modified the cross section with time. 
These assumptions yield a high degree of symmetry and it is only necessary to calculate the 
ice temperatures within the shaded region of Figure 2 to obtain the complete temperature 
solution. 

Because the crevasses are assumed to contain water , the usual arguments predicting 
maximum crevasse d epths based on creep rates do not apply (Weertman, 1971 ). When the 
crevasse is open at the surface, hydrostatic pressure of the trapped water resists creep closure; 
when it is sealed by surface freezing, incompressibility of the water cavity prevents creep 
closure entirely so that freezing is the dominant m echanism of crevasse closure. 

The model parameters are d efined as illustrated in Figure 3. The crevasse separation S 
was estimated from an aerial photograph of the drilling site taken in 1970 after termination 
of the surge (Fig. I , inset). The crevasse width W could only be crudely estimated from the 
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Fig. 2. Model qf crevasse field. Owing to spatial periodicity temperatures need only be evaluated in the shaded region. 

same photograph, but this parameter proved to have a minor influence on the temperature 
distributions calculated . Td was chosen so tha t the initial temperature profile agreed closely 
with observation a t the deepes t points, where ice temperatures were assumed to be relatively 
unaffected by the thermal disturbance of the upper ice (Fig. 4) . The crevasse depth de could 
not be estimated and was adjusted to give the best fit to the data. Finally the d epth to the 
initial water surface dw was taken to be 15 m , the approximate depth to the present crevasse 
bottoms which are interpreted as ice bridges. 

The thermal effec ts of the surge are complex and unknown. H ence, to isolate the effects of 
crevassing we shall omit the advection and heat generation terms from the diffusion equation 
and solve 

(p T (p T I oT 
- +- = -ox2 of K ot 

(where K is the thermal diffusivity of ice) subject to the appropriate boundary conditions. 
A t the moving ice- water interface the boundary condition is som ewhat complicated a nd makes 
the crevasse closure problem a close relative of the classical Stefa n problem (Carslaw a nd 
Jaeger, 1959) . Conservation of thermal energy a t the pha3e boundary gives 

KVT - KwVTw = PwLv (3) 

where K is the thermal conductivity of ice, Kw the thermal conductivity of water , Tw the 
water temperature, pw the density of water , * L the latent heat of fu sion and v the velocity of 

• The traditiona l S tefa n problem d eals with two-phase boundari es and constant d ensity p across the interface. 
I n the crevasse closure problem the two phases have different densities a nd the question a rises as to which value of 
p should be used. All the la tent energy of the water must go into the glac ier ice. Some of this energy will initia lly 
be stored as elastic stra in, but eventually is converted to thermal energy as the stra ined ice relaxes. T hus to ensure 
conserva tion of energy we ta ke the d ensity in Equation (3) to be tha t of wa ter pw, although we ignore the d eta il s 
o f elastic stra in in our calcula tions. 
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Fig. 3. Finite-difference grid illustrating model parameters and boundary conditions. 

the interface. The water can be assumed isothermal at T m = 0 ° C so that Kw \1 Tw vanishes. 
The time-dependent crevasse half-profil e X (y, t ) as obtained from Equation (3) IS 

t 

X (y, t ) = X (y, 0)- KLf {I \1Ti(x,y, t )l /cos lXt (X,y, t )} dt 
pw 

o 

where IX is the angle between the vector - \1 T and the x-axis, and the subscript i refers to 
points along the interface. 

The remaining boundary conditions are straight-forward . At all ice- air interfaces the 
temperature is T s+ A sin '27Tf ot where T s is the mean annual tempera ture, A is the amplitude 
of annual temperature variation and fo = I cycle a - I. At depth d* well below the region 
influenced by the crevasses the temperature is Td . The air- water interface is assumed to 
vanish almost instantly and is replaced by an ice- air interface. At the vertical boundaries 
of the grid the horizontal heat flux vanishes by virtue of the spatial periodicity of crevassing ; 
thus aT/ox vanishes a t these boundaries. 
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THERMAL EFFECTS OF C R EVASS I NG 

TEMPERATURE (QC) 

- 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 

WATER 
t = 0.0 t = 1.0 

10 m 

Fig. 4. Theoretical temperature profiles 15 m from nearest crevasse at various times given in years. Measured Steele Glacier 
temperatures are indicated by open circles j temperatures corrected to equilibrium are indicated by solid circles. 

Equation (2) was written as a finite-difference equation and solved by the Peaceman
R achford implicit alternating-direc tion technique (Peaceman and Rachford , 1955; Forsythe 
and W asow, 1960; Carnahan, and others, 1969). Details of this numerical method are given 
in Appendix B. The time evolu tion of the crevasse cross-section was computed by finite
difference evaluation of Equation (4) at each time step . 

R ESULTS 

For reasonable parameter values the model predicts ice temperatures which agree well 
with those measured in Steele G lacier. Theoretical temperature profiles from the model , 
with param eters as listed in Table II , are displayed in Figures 4 and 5, a long with the observed 
temperature profile. In these calculations the crevasse spacing was taken as 30 m so that 
) 5 m is the maximum possible distance between a drilling site and the central plane of the 
nearest crevasse. Figure 4 is a sequence of profiles, midway between crevasses, at successive 
times ranging from ) - )0 years after crevasse formation . The 6,5 year profile corresponds to 
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the time of thermal drilling on Steele Glacier. Temperatures predicted at various distances 
from the crevasse at t = 6.S years are shown in Figure s; the curves are closely simila r for 
distances 9- 1S m from the crevasse. The model, then, seems capable of explaining the gross 
features of the observed anomaly provided the drilling site was located IS ± 6 m from the 
nearest crevasse at a time 7± 3 years after the surge onset. Neither of these conditions is very 
stringent and both are satisfied by the drill site. 
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Fig . 5. Theoretical temperature profiles at various distances from the nearest crevasse at t = 6.5 years. Measured S teele Glacier 
temperatures indicated by open circles; temperatures corrected to equilibrium are indicated by solid circles. 

The model also presents an interesting study of crevasse closure in cold ice. Since Equation 
(4) was solved at each time step, a plot of X (y , t ) gives a graphic illustration of crevasse closure 
(Fig. 6). Surprisingly slow closure takes place after the first four years. However, Figure 4 
shows that after four years the ice between the water-fi lled portions of the crevasses, even at 
the furthest points from them , has warmed to within two degrees of the water temperature. 
Consequently horizontal temperature gradients are very small and heat flux from the crevasse 
is minimal, except at the top and bottom of each water cavity, where vertical heat flux can 
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carry energy away from the crevasse. This slow closure is due to the close spacing of the large 
crevasses, which concentrates the thermal energy into a small volume. Increasing the crevasse 
separation was found to greatly increase the rate of closure; an isolated crevasse could be 
studied by choosing a very large crevasse spacing. 
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TABLE 11. NUMERICAL INPUTS FOR CREVASSE MODEL 

Model parameters 
Crevasse separation 
Crevasse width 
Crevasse depth 
Depth to water surface 
M ean surface temperature 
Amplitude of annua l tempera ture variation 
Deep ice boundary condition 
Depth to d eep ice boundary 
Initial temperature gradient 

Physical constants 
Ice density 
Water density 
Thermal conductivity of ice 
Specific hea t of ice 
Thermal diffusivity of ice 
Latent hea t of fusion in ice 

Finite dijferwce variables 
Horizontal spatial increment 
Vertical spatial increment 
Time increment 

(t ~ 1.0 year) 
(t > 1.0 year) 

Spatia l grid size 

S 
W 
de 
d w 
T s 
A 
Td 
d* 
G 

p 
pw 
K 
C 
K 

L 

tJ.x 
tJ.] 

.,. 
T 

30m 
5 111 

80m 
15 m 

_ 8.0° C 
8.0° C 

- 6.25° C 
150 m 

11.7 d eg km- I 

9.0 X 10 2 kg m - ' 
1.0 X 10' kg m- ' 

2.219 W m - I deg- I 
2.10 1 X 10' J kg- I deg- I 

1.173 X 10 - 6 m 2 S- I 
3.337 X 10' J kg- I 

0.50 m 
5.00 m 

0 .01 year 
0.02 year 

31 x 3 1 
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Fig . 6. Closure by rifreezing of a water-filled crevasse in cold ice. Crevasse cross-sections are indicated at times give/l in .years . 
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C ONC L UDI NG RE MARKS 

Our m odelling study indicates that partially water-filled crevasses can have a significant 

effect on the temperatu re distribution within a cold glacier and tha t the observed temperature 

anom aly in Steele Glacier is probably due to this energy source. Simila r a nom alies are likely 

to occur in o ther cold surge-type glaciers a nd rem ain for m any years a fter the ac tive phase 

termina tes. Thin surging glaciers wo uld be pa rti cula rly sensitive to such a m aj or disturba nce 

of their temperatu re regime. 
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APPENDIX A 

FREEZING OF A CYLI NDRICAL WATER- FILLED HOLE IN COLD ICE 

To compute hole closure rates and cooling curves for a water-filled cylindrica l hole in cold ice, diffusion 
equations of the form 

azT 1 aT 1 aT 
&2"+ ;: ar = -; at 

m ust be solved in ice and wa ter. At the ice- water interrace the boundary conditions are 

K aT _ K a Tw _ Ldrc 
Br war - pw dt 

a nd T (rc, I) = Tw (rc, I) = Till 

where re is the radius of the water-filled cylinder a nd Till the melting temperature of ice. The remaining boundary 
condi tions a re 

lim T (r, t ) = To (Ai) 
r~o:; 

and (AS) 

where To is the a mbient ice temperature, ql (/) the strength of a line hea ting source, and ro its radius. Bounda ry 
condition (AS) a llows the possibility of evaluating the effect of ohmic dissipa tion in the power cable leading to 
the thermal probe. In the calcula tions discussed above ql was negligible and the water phase was essentia ll y 
isothermal at temperature T m. Solutions for iarge values of ql have a lso been computed to determine whether 
line heating can be used to inhibit hole closure during thermal drilling. 

In passing to a fin ite-diffe rence a pproximation or (A I ) it is convenien t to introduce a logarithmic g rid by the 
transrormation R = In r; thus (A I) becomes 

az T 1 aT 
exp (- 2R)aRz = -;; at (A6) 

with T = T (R, I), and (A2) g ives 

dRc 
Tt 

exp (- 2Rc) (K aT _ Kw aTw) 
pwL oR oR 

where Rc = In re. 
Following the Crank- N icolson approach, the so lutions of Equation (A6) for times t a nd t+ 7 a re averaged to 

reduce the discretization error giving as the finite-difference equa tion in the ith medium 

- Aj(J exp (- 2R) Ti (R - h, 1+ 7) + [1 + 2Aj(J exp (- 2R)] T i (R,I+ 7)-
- "\j(Jexp (- 2R) T i (R + h, I+ 7) = "\i( I - (J ) exp (- 2R ) Ti (R - h,/ )+ 

+[1- 2"\i ( I - (J) exp (- 2R)] Tj (R, 1)+ ,.\i ( I - (J ) exp (- 2R) T i( R+ h, I) (AB) 

where h is the space increment of the logarithmic grid, 7 the time increment, ,\£ = KiT/hz, and (J is an averaging 
parameter which is usually set to the value (J = 0.5. The va ria bles R and t take discre te values mh and IlT res
pectively, where m and Il are integers. In Equation (AB) the right-hand side terms are known and the le ft -hand 
side terms are unknown . If similar equat ions a re written at each grid point one obtains a tridi agona l se t o r linear 
('quat ions which can be solved for the unknown tempera tures T (R, 1+ T). 

Infi n itely la rge grids a re not feas ible so that the boundary condition (Ai) is replaced by T (R max , I) = To 
where Rmax is some suita bly la rge value of R = In r. At Ro = In ro we have the condition 

(Ag) 

a nd at Rc = In rc, the ice- water interface, T (Rc, I) = Till' The finite-difference eq uations (AB) a re solved 
subject to the above boundary conditions and the migration of the ice- water interface is eva luated at each time 
step by substituting finite-difference a pproxima tions of aT (Rc, 1) /01 and aTw (Rc, I)/at into Equation (A2 ) . When 
the condition Rc < Ro is sa tisfied, the water phase is considered to vanish and a simple one-phase problem results. 

APPENDIX B 

P EACEMAN- RACHFORD NUMER ICA L METHOD 

For a finite-difference grid with space intervals tJ.x, tJ..y a nd time step T , the standard implicit finite-diffe rence 
approximation to Equation (2) yields 

- "\xT (x - tl..x,y, 1+ 7)- "\yT(x,y - tl..y, I+ T)+( I + 2,.\.c + 2,.\y )T (x,y, I+ T)-
- ,\yT(x,y+ tl..y,t + T)- ,.\XT (x + tl..x, .Y, 1+ 7) = T (x,y,/) (BI ) 
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where ,'Ix = KT/( D.X)Z, '\y = KT/( D.y )z, and the vari a bles x,y, a nd 1 have the discrete values x = iD.x, y = jD.y, 
and 1 = nT for integer values o f i , j, a nd n. Equa tions (BI ) a re implicit in both x - and y-directions a nd have five 
unknowns per equa tion . Direct solution of this sys tem of equations requires the inversion o f a la rge fi ve-band 
diagonal ma trix and is computa tion a lly expensive. 

In the Peaceman- R achford implicit-alternating-d irection method, two systems of equations a re used in turn 
over successive time steps of duration T/2. The first equa tion is implicit in the x-direction only, the second in the 
y -direction. Using the notation T* (x,y) to represent the intermediate values of T half-way through the time 
step T, for implicit x we have 

- T* (x - D.x,Y)+ 2( 1/ >'x + I ) T* (x,y)- T* (x + D.x, y) 
= ,\y/ A .• T (x,y - ~y, /)+ 2(1/ >'L - >.y/ >'x ) T (x,y, 1)+ ,\y/ >' .• T (x, y+ D.y, I), (B2 ) 

and for implic it y 

- T (x,y - D.y, I+ T)+ 2(1/ >'y+ I) T (x,y, I+ T)- T ,x,y + D.y, I+ T) 
= >'x/ >.y T* (x - D.~,Y)+ 2 ( 1 / '\y- AL/ >.y ) T* (x,y )+ >'x/ >.yT*(x + D.x, y) . (B3) 

The systems of equ a tions (B2) a nd ([3) h aye only three unknowns per equation and the implicit solution of each 
system merely involves the inversion of tridiagonal matrices for which simple a nd efficient algorithms are readil y 
available. 

Holding y constant, one eq uation of the form (B2) is written for each value of x a nd the resultant tridiagonal 
system of equations is solved simultaneously. Equations (B2 ) a re solved in this manner once for each value of y 
to generate the complete solution T* (x,y ). Equations (B3) a re now solved by substituting the solution T* (x,y ) 
obtained from (B2) into (B3) . Holding x con~ ta nt , one equation of the form (B3) can be v.ritten fcr each value 
of y and the new sys tem of equ a tions solved simultaneously. Equations (B3) are solved once for each value of x 
to generate T (x,y, 1+ T), the temperature distribution advanced one full time step. This procedure is uncondi
tionally stable for a ny value of T and the discretization error is O[Tz+( D.X)2]. 
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