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Abstract: Northern protected areas guard against habitat and species loss but are themselves highly
vulnerable to environmental change due to their fixed spatial boundaries. In the low Arctic, Torngat
Mountains National Park (TMNP) of Canada, widespread greening has recently occurred alongside
warming temperatures and regional declines in caribou. Little is known, however, about how
biophysical controls mediate plant responses to climate warming, and available observational data
are limited in temporal and spatial scope. In this study, we investigated the drivers of land cover
change for the 9700 km2 extent of the park using satellite remote sensing and geostatistical modelling.
Random forest classification was used to hindcast and simulate land cover change for four different
land cover types from 1985 to 2019 with topographic and surface reflectance imagery (Landsat
archive). The resulting land cover maps, in addition to topographic and biotic variables, were
then used to predict where future shrub expansion is likely to occur using a binomial regression
framework. Land cover hindcasts showed a 235% increase in shrub and a 105% increase in wet
vegetation cover from 1985/89 to 2015/19. Shrub cover was highly persistent and displaced wet
vegetation in southern, low-elevation areas, whereas wet vegetation expanded to formerly dry, mid-
elevations. The predictive model identified both biotic (initial cover class, number of surrounding
shrub neighbors), and topographic variables (elevation, latitude, and distance to the coast) as strong
predictors of future shrub expansion. A further 51% increase in shrub cover is expected by 2039/43
relative to 2014 reference data. Establishing long-term monitoring plots within TMNP in areas where
rapid vegetation change is predicted to occur will help to validate remote sensing observations and
will improve our understanding of the consequences of change for biotic and abiotic components of
the tundra ecosystem, including important cultural keystone species.

Keywords: tundra vegetation; remote sensing; climate change; shrubification; land cover; tundra
ecotone; eastern Arctic

1. Introduction

Arctic plant communities are experiencing significant modification due to recent cli-
mate change [1,2], which is altering the composition, distribution, and productivity of many
tundra plants [3–5]. Because of the close ties between tundra vegetation and numerous
biological [6,7], geophysical [8–10], and cultural systems [11,12], studying changes in plant
community dynamics across a range of Arctic environments is critical for predicting future
impacts of environmental change. Identifying the drivers of past changes in plant commu-
nities is also essential for guiding long-term monitoring, habitat vulnerability assessments,
and the management of cultural keystone species in northern protected areas.
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Perhaps the most striking recent change in Arctic plant communities has been the
increase in shrub dominance that has occurred in many tundra landscapes. Shrubification,
referring to increases in the abundance, cover, and biomass of shrubs [13], has been reported
through Inuit knowledge sharing [14,15], remote sensing studies [16–18], and field-based
observations [19,20]. Warming air temperatures can be viewed as a top-down driver of
shrubification [13,21], with mediating factors such as herbivory, soil moisture, nutrient
availability, and landscape position contributing to variability in the response of plant
communities [21–24]. Whereas shrubification is an obvious indicator of the realized impacts
of climate change, shifts in the distribution and abundance of tundra plants that are more
visually subtle (i.e., low statured plants and ground cover) can also have wide-reaching
effects over large areas. One approach to gaining a temporally and spatially rich perspective
on tundra vegetation change is to combine remote sensing techniques with in situ data
collection. Doing so can help to overcome our limited ability to understand mechanistic
processes from remote sensing imagery [25] and the logistical challenges of conducting
extensive field campaigns in remote areas of the North [26].

In the eastern Canadian low Arctic, the Torngat Mountains of Nunatsiavut and
Nunavik have undergone widespread environmental change in recent years, including
changing permafrost [27] and glacier thinning [28,29], declines in caribou populations [30],
and increased shrub establishment and growth [16,31]. In 2005, Torngat Mountains Na-
tional Park Reserve (Tongait KakKasuangita SilakKijapvinga; designated Torngat Moun-
tains National Park in 2008; TMNP) was officially established with the intent of protecting
the unique natural history and culture of the region [32]. Northern protected areas, such as
TMNP, hold significant ecological value by offering protection against human drivers of
habitat and species loss, and are expected to serve as important refuges for plants and ani-
mals moving northwards and to higher elevations due the impacts of climate change [33,34].
Due to their fixed spatial boundaries, however, protected areas are themselves highly vul-
nerable to changing environmental conditions and many will see shifts in biome or land
cover types in the coming decades [35,36]. Ecological inventories developed through
field-based data collection and remote sensing are an essential tool for managing protected
areas and culturally important species, and provide information about baseline conditions
against which to measure on-going change [37]. Valuable plot-scale information about
vegetation change is available in southern TMNP [31]; however, this field site includes only
a small portion of the range of conditions represented across the park’s topographically
diverse 9700 km2, and little is known about contemporary plant community dynamics in
central and northern TMNP.

The goal of this research is to extend our knowledge of vegetation dynamics into the
past and across a larger spatial expanse to support future research and management activi-
ties in TMNP and surrounding areas, and to generate baseline information about critical
habitat for Torngat Mountain caribou. The approach used here has wide applicability for
monitoring land cover change in Arctic tundra environments elsewhere.

2. Methods
2.1. Study Area

Torngat Mountains National Park of Canada (TMNP; Tongait KakKasuangita SilakKi-
japvinga in Inuttitut) is located in an overlapping area of the Nunatsiavut and Nunavik
Inuit land claims in northern Labrador (Figure 1). It was established as a National Park
Reserve when the Labrador Inuit Land Claim was enacted in 2005 and became a National
Park in 2008 when the Nunavik Inuit Land Claim came into effect; the park is intended
to represent and protect the Northern Labrador Mountains natural region [32]. Span-
ning over 9700 km2, the park is cooperatively managed with Inuit from Nunatsiavut and
Nunavik [38], and the area has been a homeland to modern Inuit and their predecessors
for millennia.
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Figure 1. (A) Location of Torngat Mountains National Park (TMNP) in northern Nunatsiavut and northeastern Nunavik. 
The green circle on the inset map of Canada shows the location of the park. (B) Land cover classes (2014) and locations of 
existing temperature monitoring sites in TMNP. 

The Torngat Mountains are the southernmost extent of the Arctic Cordillera in Can-
ada. The area is topographically complex and the highest elevations are encountered in 
the Selamiut Range in the central portion of the park, where the tallest peak, Mount Caub-
vick, reaches 1652 m a.s.l. The park spans more than 200 km of latitude and relief declines 
to the north; low elevation areas are characterized by fiords that extend far inland from 
the coast, deep river valleys, and a complex coastline that includes an archipelago of hun-
dreds of nearshore islands. The regional climate is strongly influenced by the Labrador 
current [39], which induces foggy and cool maritime conditions throughout the summer. 
Formation of landfast sea ice along the entire northern Labrador coastline results in cold, 
continental conditions during winter. The harsh climate and slow soil development have 
resulted in sparse vegetation cover throughout much of the park. TMNP is situated just 
north and east of the treeline; however, evergreen and deciduous broadleaf shrubs are 
common at low elevation on sheltered slopes [40] and along riparian channels [41]. 

The broader Nunatsiavut and Nunavik regions (Figure 1A) have undergone appre-
ciable environmental change in recent decades. Mean winter and summer temperatures 
have increased by 2.0 °C/decade and 0.5 °C/decade respectively (1987-2016), and annual 
temperatures are expected to warm by a further 2–8 °C by the end of the century [42]. 
Changes in precipitation are difficult to detect, but summer precipitation has generally 
increased whereas annual snowfall has declined throughout northern Nunatsiavut and 
Nunavik (1980–2014). In the future, a wetter climate is anticipated as a result of increased 
rainfall [42]. Climate change in the region has and will continue to have various direct and 
indirect impacts for permafrost [27], animal and plant populations [41,43,44], and vegeta-
tion structure and cover [16,31,45]. 

  

Figure 1. (A) Location of Torngat Mountains National Park (TMNP) in northern Nunatsiavut and northeastern Nunavik.
The green circle on the inset map of Canada shows the location of the park. (B) Land cover classes (2014) and locations of
existing temperature monitoring sites in TMNP.

The Torngat Mountains are the southernmost extent of the Arctic Cordillera in Canada.
The area is topographically complex and the highest elevations are encountered in the
Selamiut Range in the central portion of the park, where the tallest peak, Mount Caubvick,
reaches 1652 m a.s.l. The park spans more than 200 km of latitude and relief declines to the
north; low elevation areas are characterized by fiords that extend far inland from the coast,
deep river valleys, and a complex coastline that includes an archipelago of hundreds of
nearshore islands. The regional climate is strongly influenced by the Labrador current [39],
which induces foggy and cool maritime conditions throughout the summer. Formation of
landfast sea ice along the entire northern Labrador coastline results in cold, continental
conditions during winter. The harsh climate and slow soil development have resulted in
sparse vegetation cover throughout much of the park. TMNP is situated just north and
east of the treeline; however, evergreen and deciduous broadleaf shrubs are common at
low elevation on sheltered slopes [40] and along riparian channels [41].

The broader Nunatsiavut and Nunavik regions (Figure 1A) have undergone appre-
ciable environmental change in recent decades. Mean winter and summer temperatures
have increased by 2.0 ◦C/decade and 0.5 ◦C/decade respectively (1987–2016), and annual
temperatures are expected to warm by a further 2–8 ◦C by the end of the century [42].
Changes in precipitation are difficult to detect, but summer precipitation has generally
increased whereas annual snowfall has declined throughout northern Nunatsiavut and
Nunavik (1980–2014). In the future, a wetter climate is anticipated as a result of increased
rainfall [42]. Climate change in the region has and will continue to have various direct
and indirect impacts for permafrost [27], animal and plant populations [41,43,44], and
vegetation structure and cover [16,31,45].
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2.2. General Approach

This study employed remote sensing and statistical modelling to: 1) detect land cover
change in TMNP from 1985 to 2019, and 2) predict where shrub expansion is likely to occur
in the future (2039/43 time period). Relationships between contemporary vegetation classes
and surface reflectance/topographic variables were modelled and applied to past Landsat
composites to hindcast land cover changes through time. Spatial and temporal changes
in vegetation type and abundance were then analyzed in the context of biogeophysical
controls. Finally, the probabilities of pixels transitioning to shrub dominance were forecast
for the 2039/43 time period by extending a model of past (1985/89 to 2014) transitions to
shrub dominance into the future.

2.3. Preparation of Spatial Data
2.3.1. Land Cover Map

The reference dataset of contemporary (2014) land cover for TMNP was a 19 class
ecotype map (5 m resolution) generated by Ponomarenko and Quirouette [46]. The ecotype
map was created from a combination SPOT5 imagery collected in 2008 and 2009, and
field validations in 2008. Although the 2008 ecotype map [46] predates the 2014 Landsat
composites/indices (described below) by six years, 2014 was the nearest period with
sufficient Landsat coverage for modelling due to persistent summer cloud cover. The map
was reclassified from 19 ecotypes into four generalized land cover classes including shrub,
dry vegetation, non-vegetated, and wet vegetation, with all other ecotypes excluded from
analysis (Table 1). Combining ecotypes reduces the level of detail available for different
vegetation types; however, the generalized classes were necessary for reducing model
complexity in later steps of our analyses. We note that reclassified pixels in the shrub
class, which were of particular interest, predominantly represent the low-medium shrub
category (58.7% of shrub ecotype pixels; Table 1; including Salix spp., Betula glandulosa,
Rhododendron tomentosum), with dwarf shrubs (including Vaccinium vitis-idaea, V. uliginosum,
Empetrum nigrum, Rhododendron lapponicum, dwarf species of Salix, Betula glandulosa) and
medium-tall shrubs (including Salix spp., Betula glandulosa, Alnus alnobetula) making up
smaller proportions of the total (see Table 1). The reclassified ecotype map (hereafter the
“land cover raster”) was reprojected (“warp” tool in QGIS) and aggregated (“r.resamp.stats”
in GRASS) to match the projection and 30 m resolution of Landsat imagery. The mode
of the 36 pixels (5 m res.) within each 30 m grid cell was used during aggregation and
the “align” tool (nearest neighbor interpolation) was applied to ensure alignment with
corresponding Landsat pixels.

The dry vegetation class was the dominant cover type in the reclassified 2014 land
cover raster (61.3% of the total pixels). Wet and non-vegetated pixels were the next most
abundant at 18.8% and 13.5%, respectively. The shrub cover class was the least common
with 6.5% of the total pixels.

2.3.2. Landsat Imagery

Annual composite images of the study area were generated for years 1985 to 2019
from USGS Landsat Surface Reflectance products (Tier 1; Landsat 5 ETM, 7 ETM+, and 8
OLI). Due to the large latitudinal, climatic, and phenological variations across TMNP, it was
expected that differences in growing season may alter the peak greening period in southern
versus northern portions of the park. Annual duration of peak greening (seasonal changes
in the normalized difference vegetation index; NDVI) was thus evaluated for southern,
central, and northern TMNP using time series of 250 m resolution Terra MODIS data from
2014 (MOD13Q1.006; AppEEARS web application; [47]). Peak annual greening ranged
from three months in the south (approx. June 15 to September 15) to only one month in the
north (approx. July 15 to August 15). The period from July 1 to September 1 was therefore
retained for acquiring Landsat imagery for land cover hindcasting and model evaluation.
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Table 1. Reclassification and percent composition of the original 19 ecotypes in four representative
land cover classes.

Original Ecotype
(Ponomarenko and

Quirouette 2014)

Reclassified Land Cover
(This Study)

Ecotype Pixels per Land
Cover Class

Dwarf shrub Shrub 28.5%

Low-medium shrub Shrub 58.7%

Medium-tall shrub Shrub 12.8%

Herb-lichen tundra Dry vegetation 21.7%

Mesic Racomitrium
lanuginosum Dry vegetation 23.3%

Rock-lichen Dry vegetation 55.1%

Alluvial non-vegetated Non-vegetated 6.0%

Rock Non-vegetated 90.9%

Sparsely vegetated beach Non-vegetated 3.0%

Brackish fen Wet vegetation 0.4%

Fen Wet vegetation 41.9%

Moist sedge Wet vegetation 57.7%

Cloud NA (Masked) NA (Masked)

Ocean NA (Masked) NA (Masked)

Shadow NA (Masked) NA (Masked)

Shallow water NA (Masked) NA (Masked)

Snow NA (Masked) NA (Masked)

Snowbank NA (Masked) NA (Masked)

Water NA (Masked) NA (Masked)

Landsat image collections for the time period of interest (1 July to 1 September 1985 to
2019) were queried in the Google Earth Engine platform [48] and underwent an automated
quality assurance procedure that screened pixels for sensor saturation (likely indicative
of snow or water), cloud cover (>80%), and atmospheric haze and opacity. Images from
Landsat 5 and 8 were cross-calibrated to a Landsat 7 equivalent using the coefficients
and methods described in Pironkova et al. [49]. Composites containing red, green, blue
color (RGB), shortwave infrared (SWIR), and near infrared (NIR) bands were generated
for each year using the median values of the remaining unmasked pixels. The normalized
difference vegetation index (NDVI = NIR − R/NIR + R) and normalized difference water
index (NDWI = NIR − SWIR/NIR + SWIR) were later calculated for each composite
image in R [50]. Inspection of the annual composites showed persistent data gaps due
to cloud cover and/or late lying snow within individual summers, therefore composites
were binned into 5-year averages (1985/89, 1990/94, etc.) for analysis. Data availability
within the park boundary was >80% in all binned composites (mean 86.3%; SD = 4.9%)
and exceeded 90% in the 2010/14 and 2015/19 bins (coincident with the launch Landsat 8
in 2013).

2.3.3. Topographic Rasters

A series of additional rasters representing topographic characteristics were prepared
to inform the classification of land cover types. Slope, aspect, and latitude rasters were gen-
erated in QGIS from the Government of Canada’s Canadian Digital Elevation Model [51]
which was reprojected and aggregated to a 30 m resolution (bilinear interpolation). Aspect
was folded about the northeast–southwest line to rescale values from 0◦ to 180◦ and address
the circularity of compass measurements [52]. In the resulting raster, large values indicate
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the warmest (southwest-facing) and low values represent the coolest aspect (northeast-
facing). A distance to the coast raster was also generated from a rasterized shapefile of the
coastal boundaries of Québec and Labrador.

2.4. Hindcasting (1985/2014) and Simulating (2015/2019) Land Cover Using Random
Forest Classification

Land cover rasters were generated using summer 2014 Landsat composites/indices
(red, green, blue, SWIR, NIR, NDVI, NDWI) and topographic variables (aspect, slope,
latitude, elevation, distance to coast) in a pixel-based random forest classification algorithm
(see workflow in Figure S1). The random forest algorithm was developed using the
“ranger” option from the “train” function (“caret” package; [53]) in R. Preliminary analyses
on a subset of the data showed that an “mtry” value (predictors sampled for splitting
at each node) of 2 and minimum node size of 1 produced the best models, and that
classification errors plateaued rapidly when random forest iterations contained >100 trees.
These parameters (mtry = 2, min.node.size = 1, num.trees = 300) were thus adopted for
modelling throughout TMNP. The random forest algorithm was trained on a random subset
of 50% of the data with the remaining 50% used for model evaluation. Predictor variable
influence on model accuracy was qualitatively assessed with a variable importance plot.
Overall classification accuracy was determined from test-set predictions using a confusion
matrix and receiver operating characteristic (ROC) curves.

Hindcasting (1985/89 to 2010/14) and simulating (2015/19) land cover classes was
achieved by applying the random forest algorithm to the binned Landsat composites
(topographic variables remained constant), resulting in seven land cover intervals (1985/89
to 2015/19). These served as the basis for detecting land cover changes through time.

2.5. Change Detection

Changes in land cover classes were first assessed by comparing the output rasters from
1985/89 and 2015/19. Missing pixels were masked across rasters to ensure comparisons
occurred over a common area. Next, the frequencies of different transitions in land cover
classes over time (e.g., the proportion of 1985/89 pixels that transitioned to shrub, dry
vegetation, wet vegetation, or non-vegetated pixels from each of four initial land cover
types; 16 possible outcomes) were calculated. Temporal trends in the proportional cover of
each land class were assessed by calculating the proportion of each land cover type in the
five-year bins relative to the 1985/89 baseline, with missing pixels masked across all seven
land cover layers to ensure comparability.

To investigate whether shrubs have shifted to higher elevations or latitudes over
time, the elevations and latitudes of “new” shrub pixels were determined for rasters from
1990/94 to 2015/19. Shrub pixels from the binned land cover rasters were isolated from
other cover types, and pixels corresponding to shrubs in the previous five-year bin were
masked (thus, data from the earliest bin, 1985/89, are not available). The median, and
25th and 75th quantiles of elevation and latitude, were then determined for the new shrub
pixels in each raster.

Finally, proportional changes in land cover class were evaluated for seven sites where
hourly ground surface and air temperatures are currently being monitored, providing
local-scale snap-shots of vegetation change (Figure 1B). The proportion of each land cover
class was determined from three binned land cover rasters (1985/89, 2000/05, 2015/19) for
the 10 km2 surrounding the sites. These sites have the potential to be used for validating
remotely sensed data and for establishing long-term vegetation monitoring in the future.

2.6. Predicting Future Shrub Expansion

To identify potential hotspots of future shrub expansion, a set of candidate binomial
models were assessed to predict the likelihoods of non-shrub pixels transitioning to shrub
cover in the future (see workflow schematic in Figure S2). The approach follows that of
Lemay et al. [54] who used both binomial and multinomial regression to predict areas of
shrub change in Nunavik, Québec. Their results showed that although a binomial shrub
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change model ignores other potential transition types, its predictive ability was similar to
that of more complex multinomial models. Our approach similarly used topographic and
biotic variables, derived from the 1985/89, “time1”, land cover raster, to parameterize the
model and predict shrub dominance in 2014, “time2”. Potential topographic predictors
included elevation (m above sea level), folded aspect, a quadratic term for slope (to allow
for the possibility that moderate slopes could be more favorable than very steep or shallow
slopes), the additive and interactive effects of slope and aspect, latitude, and the distance to
the coast. The candidate biotic predictors included rasters for land cover class (categorical;
land cover class of a pixel at time1), neighboring shrubs (numeric; number of shrub class
pixels within a 24-pixel search window of the focal pixel at time1), and shrub edge (binary;
whether the focal pixel was adjacent to a shrub pixel at time1, determined from an 8-pixel
search window). From an ecological perspective, it was expected that land cover types
would differ in their likelihood of becoming shrub dominant at time2. We also expected that
pixels adjacent to existing shrubs would be more likely to transition to shrub dominance
in the future due to higher potential for seed production and dispersal or clonal growth
from proximal shrubs. Sites in the vicinity of extant shrubs could also have an inherently
higher likelihood of being suitable shrub habitat due to physical changes associated with
shrub structure (e.g., [55]). The 2014 (time2) shrub cover raster was split into a training
set containing 50% of the data to parameterize the candidate models and a test set to
evaluate the accuracy of the final model. The potential influence of spatial autocorrelation
on model parameterization was addressed by selecting every other pixel for the training
set and the remainder for the test set. As in Lemay et al. [54], pixels that were themselves
shrub dominant at time1 were excluded from the analysis because it was assumed that
they would still be shrub dominant at time2 (transition probability of 1); this tendency was
confirmed by our analyses of land cover transitions that showed shrub pixels to be highly
persistent over time (see Results for more details).

Multimodel inference was employed to select the most suitable predictive model from
a suite of candidate models of varying complexity. Several constraints were imposed on the
possible combinations of predictor variables to limit the number of comparisons [54]. Land
cover class was included in all models, whereas either shrub edge or the number of shrub
neighbors was included. Latitude and distance to the coast were always included together
in candidate models, and slope and aspect (in the form of “slope + aspect + slope × aspect
+ slope2”) were likewise grouped. These conditions resulted in 24 candidate models (see
full list of models in Table S1) that were evaluated using an information theoretic approach
(“MuMIn” package in R; [56]). The most suitable model was selected using Akaike’s
Information Criterion (lowest AIC); model averaging using Akaike’s weight can be a
means of increasing the robustness of the predictions by weighting the parameters of the
top performing models [57], but this was not required because the top ranked model had an
Akaike weight of 1 (i.e., little additional information would be gained by model averaging).
The selected model was then applied to the test-set to evaluate model accuracy against the
distribution of shrub class pixels from the 2014 land cover raster; shrub dominant pixels at
time2 were considered those with a probability ≥0.50 of becoming shrub dominant given
their associated topographic and biotic characteristics.

In the final step, the parameterized binomial model was extended to determine the
likelihood of pixels transitioning to shrub dominance one time step into the future (2039/43;
time3). The temporal span of predictions (2014 to 2039/43; 27 years) was determined from
the length of time between the midpoint of the earliest available Landsat composites
(1985/89) and the reference land cover imagery (2014). Beyond these practical consider-
ations, the timespan has the benefit of informing near-term research planning and park
management and is relevant to the lifetimes of people using the area today. Rasters repre-
senting the same biotic variables as for time1 were generated for time2 from the 2014 land
cover raster, whereas topographic variables were assumed to remain constant. Once again,
pixels in the shrub cover class (now for time2) were masked from the predictor rasters. A
raster depicting shrub transition probabilities was created from the model output.
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3. Results
3.1. Random Forest Algorithm

The overall classification accuracy of the random forest algorithm (test-set data of 2014
land cover classes) was 81.1% and the area under the ROC curves was 0.77 (average of the
four classes). NDVI, NIR, and NDWI had the highest relative importance for improving
the classification accuracy of the random forest algorithm, whereas SWIR, slope, and aspect
were of lowest importance (Figure S3). The balanced classification accuracies by land cover
type varied from 74.2% for non-vegetated pixels to 85.4% for shrub pixels (Table 2).

Table 2. Confusion matrix showing the number of actual vs. predicted pixels in each vegetation class
for the test-set data. The bolded numbers indicate the number of correctly classified pixels in each
class. The bottom row reports the balanced classification accuracy for each land cover type.

Shrub
(Actual)

Dry veg.
(Actual)

Non-veg.
(Actual)

Wet veg.
(Actual)

Sum
(Predicted)

Shrub
(predicted) 197,908 8211 6030 36,526 248,675

Dry veg.
(predicted) 16,160 2,328,700 206,718 210,150 2,761,728

Non-veg.
(predicted) 2882 68,008 237,276 7230 315,396

Wet veg.
(predicted) 57,619 137,502 19,207 578,506 792,834

Sum
(actual) 274,569 2,542,421 469,231 832,412 -

Balanced
classification

accuracy
85.38% 82.06% 74.21% 81.49% -

3.2. Temporal Changes in Land Cover Class

Here, temporal changes in land cover are described by cover type. Point-in-time
changes were determined from the frequency of class transitions between the 1985/89
binned raster and the 2014 reference land cover raster. Temporal trends were determined
by comparing the number of pixels of each cover type in each 5-year bin relative to the
1985/89 baseline raster.

3.2.1. Shrub Cover Class

The vast majority (97.3%) of shrub-dominant pixels in the 1985/89 raster remained so
in 2015/19, suggesting that transitions from shrub dominance to other vegetation types
rarely occurred (<3% of the time; Figure 2). Notably, 28.8% of pixels in the wet vegetation
class in 1985/89 transitioned to shrub cover in 2015/19, compared to only 1.4% and 3.0%
of dry and non-vegetated pixels. When common pixels were compared across the seven
binned composites (Figure 3), shrub cover underwent the largest proportional change over
time, with a 234.7% increase in the number of shrub-dominant pixels by 2015/19 relative
to the 1985/89 composite. We note that shrubs represent the smallest of the four cover
classes, and the change represents an increase from 2.2% to 7.1% of the total land cover
pixels with available data. The increase in shrub cover occurred rapidly from 1990/94
onwards (Figure 3).
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3.2.2. Dry Vegetation Class

Most pixels identified as dry vegetation in 1985/89 (79.8%) remained in that cover
class in 2015/19 (Figure 2). The largest between-class transition was to the wet vegetation
class (15.5% of pixels). Many non-vegetated pixels in 1985/89 became dominated by
dry vegetation in 2015/19 (40.6% of pixels). There was little temporal change in the
percentage of dry vegetation cover (Figure 3) due to the balance of pixels gained from
the non-vegetated category and pixels lost to the wet vegetation category, and the large
number of pixels in the dry vegetation category (i.e., a larger absolute change in the number
of pixels required to cause a change in percent cover).
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3.2.3. Non-Vegetated Class

About half of the non-vegetated pixels in 1985/89 remained so in 2015/19 (49.0%). As
described above, many non-vegetated pixels in the earlier time period became dominated
by dry vegetation by 2015/19 (40.6%). There was a general decline in the abundance of
non-vegetated pixels over time, with 45.7% fewer in the 2015/19 raster relative to 1985/89.

3.2.4. Wet Vegetation Class

The wet vegetation class saw 28.8% of pixels transition to shrub cover by 2015/19
while 69.8% remained unchanged. Transitions to other land cover types represented only a
small portion of the total outcomes. By 2015/19, wet vegetation had increased by 104.7%
relative to 1985/89, with most of the gains coming from the dry vegetation class. As with
changes in shrub cover, the increase in wet vegetation primarily occurred after 1990/94.

3.3. Spatial Changes in Land Cover Class

Comparisons of the distribution of shrub-dominant pixels between 1985/89 and
2015/19 showed that shrubs generally tended to expand in areas adjacent to existing shrub
patches, particularly in drainage slopes and valley bottoms (Figure 4A). Most of the shrub
gain in 2015/19 occurred in the southern half of the park, and relatively little expansion
occurred in the top third. Although there was significant variability across elevations and
latitudes, the median elevation of new shrub establishment appears to be increasing over
time (Figure 5A). The median latitudes of new shrub pixels showed no temporal trend but
the extreme limit of new shrub pixels showed a clear latitudinal increase from 2005 to 2019
(Figure 5B).

In general, gains in wet vegetation tended to occur at mid-elevations near and adjacent
to drainage areas. In the southern portion of the park, extensive loss of wet vegetation
occurred between the two time steps (Figure 4). By comparing the area of wet vegetation
loss (red in Figure 4B) to that of shrub gain (green in Figure 4A), it is clear that most of this
loss represents a transition to shrub dominance in 2015/19. As with gains in shrub cover,
transitions to dry vegetation (mainly from the non-vegetated class) tended to occur in the
south of the park. Maps of gains and losses of dry and non-vegetated pixels can be viewed
in Figure S4.

3.4. Predicting Changes in Shrub Cover

Model comparisons revealed the model containing all predictor variables except shrub
edge to be the best model for predicting shrub probabilities (Tables S1 and S2). When
applied to the test set, the model accuracy was 95.6% and the true positive rate of the shrub
class was 71.3%. The very high overall model accuracy in part reflects the large number of
non-shrub pixels in the dataset that were correctly classified. The AUC of the test-set ROC
curve was 0.93.

The model output showed elevation, latitude, wet vegetation, and distance from the
coast to be the most influential predictors (Table 3). The probability of a pixel transitioning
to shrub dominance decreased with elevation and latitude (Figure 6) and was higher inland
than near the coast. Shrub expansion was also more likely for wet than for non-vegetated or
dry vegetation pixels (Table 3; Figure 6). The number of shrub pixels in the neighborhood
had a positive effect on the likelihood of a focal pixel also being a shrub. The relatively
smaller parameter estimates and z-values for slope and aspect indicate that the influence
of these topographic variables on shrub probabilities was more subtle.
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Table 3. Model output of the selected binomial regression model in which the probability of a pixel
being shrub dominant at time2 (2014) was estimated from topographic and biotic variables at time1

(1985/89).

Variable Estimate Std. Error z Value p value

(Intercept) 133.00 0.44 302.04 <0.0001
Land cover:

No veg −0.59 0.01 −57.77 <0.0001

Land cover:
Wet veg 1.44 0.01 228.47 <0.0001

Neighbour
shrubs 0.30 0.00 177.88 <0.0001

Elevation −0.01 0.00 −354.22 <0.0001
Latitude −2.28 0.01 −308.48 <0.0001

Distance to coast 6.21 × 10−5 0.00 193.50 <0.0001
Aspect 0.11 0.00 21.89 <0.0001
Slope 2.97 0.05 54.77 <0.0001
Slope2 −3.67 0.07 −55.94 <0.0001

Aspect × slope 0.18 0.02 10.31 <0.0001
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values. Model confidence intervals are not visible at this scale because they are very narrow, likely due to the large size of
the dataset.

The shrub probability estimates showed that a 50.9% increase in the extent of shrub
cover is expected by 2039/41 relative to 2014. Expansion is more likely to occur near areas
currently occupied by shrub patches (Figure 7), suggesting that local habitat infilling will be
a dominant mode of shrub expansion. The higher likelihood of wet vegetation transitioning
to shrub cover in the binomial model and the presence of extensive shrub patches in river
valleys indicates that soil moisture has historically been an important determinant for
shrub colonization. Predictions for 2039/43 show that latitudinally, shrub expansion is
more likely to occur in the southern two-thirds of the park than in the north. In the northern
third, new shrub colonization is most probable in low elevation areas currently occupied
by wet vegetation, but at lower probabilities overall.
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Komaktorvik Falls; 3—Ivitak Cove; 4—Cirque Mtn. Camp; 5—Upper Ivitak Valley; 6—Ramah Bay;
7—Nakvak Brook.

3.5. Vegetation Change at Existing Monitoring Sites

Temperature monitoring stations are currently located in the southern two-thirds of
the park (Figures 1B and 8) due to the higher cost and logistical challenges accessing the
northern portion of the park. Temporal changes in the proportions of land cover classes
were variable across the seven monitoring sites (Figure 8). A large increase in the proportion
of shrub cover occurred at Ivitak Cove from 1985/89 to 2015/19, whereas nearby Upper
Ivitak Valley and Cirque Mountain Camp have seen an increase in dry vegetation but
not shrub cover. These findings highlight the importance of elevation and wet vegetation
cover as predictors of shrub expansion; Ivitak Cove is a low valley site (36 m a.s.l.) with
ample wet vegetation cover in the 1985/89 raster. In contrast, Upper Ivitak Valley and
Cirque Mountain Camp are both located >450 m a.s.l. and were initially dominated by dry
and non-vegetated cover (i.e., less susceptible to shrub expansion). Full location details of
monitoring sites are available in Table S3.
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Shrub expansion has also been substantial further south at Ramah Bay. About a
quarter of pixels within the monitoring area were shrub dominant in 1985/89, increasing
to about one half by 2015/19. This change is supported by a series of repeat photographs
taken near the monitoring site (Figure S5). Finally, the southernmost site at Nakvak Brook,
located on a plateau at 506 m a.s.l., has shown little increase in shrub cover, in contrast
with the nearby river valley. The proportion of wet vegetation cover has increased over
time, however, indicating that the area could become more suitable for shrub expansion in
the future.

4. Discussion
4.1. Temporal and Spatial Changes in Land Cover

The shrub and wet vegetation classes saw the most significant gains in spatial ex-
tent from 1985/89 to 2015/19. Increased shrub cover and growth have previously been
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documented in the region [14,16,31,58,59] and have generally been attributed to regional
warming [16,31,60]. The timing and spatial scope of the changes observed here similarly
suggest that climate has been an important control on vegetation change throughout
TMNP; widespread shrub expansion began in the mid-1990s, corresponding to a period
of renewed warming and increased precipitation in the Torngat Mountains [31,42]. As
would be expected under a warming climate scenario, shrub expansion also appears to be
accelerating at higher elevations and (to a lesser degree) higher latitudes in recent decades.
It is important to note, however, that a substantial decline in the size of the George River
caribou population, whose migratory range overlaps TMNP, occurred over the same period
as temperature warming [30]. Indeed, the interacting effects of an increasingly favorable
climate and reduced herbivory may, at least in part, explain the relatively high rate of shrub
expansion that has occurred in the Torngat Mountains relative to other areas of the North
American Arctic [16,45].

In addition to increasing spatial coverage, shrub class pixels were also highly persistent
on the landscape, with few from the early time period transitioning to other land cover
types (<3%). Lemay et al. [54] similarly observed that only a small portion (14%) of shrub
dominant pixels underwent a change in cover type from 1990/94 to 2010 in Nunavik,
Canada. Examining the life history traits of the major shrub taxa (Salix, Alnus, and Betula)
reveals several possible explanations for their persistence. Many shrub species are relatively
long-lived compared to other arctic plants (decades to centuries; [61] and references therein)
prolonging their lifespan by surviving underground and spreading asexually through
layering during poor conditions [62]. With their comparatively large stature and ability
to quickly respond to improved growing conditions through shoot extension, low to tall
shrubs are also positioned to be strong competitors for space and resources while altering
microhabitat conditions such as light availability [63], snow distribution [64], and soil
conditions [65–67]. The rapid increase in shrub cover and persistence of pixels suggests
that shrub dominant areas in TMNP are unlikely to transition to other cover types in the
short term, barring major disturbances (e.g., via wildfire, a strong increase in herbivory,
or flooding).

A notable finding of the transition analysis was that most of the gain in the shrub
class took place in low-elevation riparian areas from pixels previously classified as wet
vegetation. These changes are likely driven by expansion of the low-medium shrub class
given their relatively large abundance (e.g., compared to dwarf shrubs) and tendency to
occupy valley bottoms in the original ecotype raster. Increased shrub cover in riparian and
floodplain habitats has also occurred in western North America [68–70] as these areas seem
to possess favorable hydrological characteristics. The role of soil moisture as a mediator
of shrub expansion [23,68], productivity [24], and growth [9,20] has been widely reported,
with the positive effects of warming temperatures often being greater where moisture is
non-limiting. At the same time, highly saturated soils can also be unfavorable for some
shrubs [70,71], indicating that expansion is more likely where moisture requirements are
met but not greatly exceeded. It is thus possible that the conversion of wet vegetation
to shrub cover observed in TMNP was initially facilitated by surface drying, which can
promote shrub expansion in wet areas [72]. Surface drying can be caused by increased
evaporation due to warming, soil drainage from permafrost thaw, or reduced soil moisture
caused by earlier snow melt. Such changes can negatively impact waterfowl species
whose wetland habitat can depend on the presence of frozen ground [73]. Mid-summer
soil moisture in wet areas in the south of TMNP has been observed to decline in recent
years [31], although the underlying mechanisms and the associated impacts on plant
communities require further study.

The consequences of shrub expansion have justifiably received significant attention in
the literature in recent years; however, transitions from dry to wet land cover are also a
noteworthy climate change impact because they signal a change in hydrological processes
with broader implications for ecosystem functioning [74] and wildlife [73]. Our analysis
of historical land cover change showed a net increase in the extent of wet vegetation over
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time, with most of the gains coming from the dry vegetation class at mid-elevations. Recent
climate change impacts in TMNP have included increased summer precipitation [42],
permafrost degradation [27], and glacial melt [28,29], which together may have contributed
to the expansion of wet vegetation (moist sedge and fen ecotypes) at higher elevations.
Transitions to thermokarst/wetland habitat can arise when active layer deepening occurs
atop poor subsurface drainage (e.g., impermeable ground; presence of permafrost at depth)
and causes ponding [75]. This has been observed in western Canada where forest loss has
resulted from waterlogging caused by permafrost thaw and associated ground surface
subsidence [76]. Field validations are needed to determine whether similar processes are
occurring in TMNP; however, in the only field-based observations of permafrost conditions
available, Davis et al. [31] found active layer depth to be greater in areas of high surface
wetness and a reduced probability of permafrost under pooled surface water relative to
dry sites.

Changes in dry and non-vegetated cover were proportionally smaller than for the
shrub or wet vegetation classes, possibly due to the dry, shallow soils, rocky substrates,
and/or more extreme environments found in these cover classes that would restrict many
plant species. The gains in dry vegetation that did occur tended to originate from non-
vegetated pixels in the southern half of the park, and importantly may be contributing
to the general greening trend observed over the past three decades [16]. Future field
validations would help to clarify the dominant life forms that have become establishing in
these areas.

4.2. Future Shrub Expansion in TMNP

The predictive model revealed shrub expansion to be regulated by a combination of
biotic and physical variables. The positive effect of the shrub neighbor variable in the model
signals that expansion is more likely to occur near existing shrub patches. This tendency
has been observed in tundra environments elsewhere through repeat photography [77]
and statistical modelling [54], and could be caused by the higher reproductive potential
and/or improved growing conditions near areas that are already shrub-dominant. Spread
from existing shrub patches may also be enhanced through a positive feedback with snow
cover [13,78], because snow that becomes trapped in shrub branches provides protection
from harsh winter conditions and moderates soil moisture and temperature regimes [79].
Spatial correlation in properties such as microclimate and soil conditions could also mean
that the environment is more likely to be favorable for shrub expansion near existing
shrub habitat.

Topographic and geographic variables have also been shown to moderate changes in
shrub cover (e.g., [21,80,81]), because landscape position serves as a proxy for factors that
influence plant species composition. In TMNP, we found that elevation and latitude were
inversely related to the probability of shrub expansion, whereas probabilities increased
with distance from the coast. Low-lying, continental areas in the south of the park likely
offer warmer and more sheltered environments as temperatures decline and wind speeds
increase at higher elevations and to the north. Peak greening in the northern portion
of TMNP was found to last only about one month, which could be related to enhanced
exposure to cold, coastal conditions at the tip of Nunavik and Nunatsiavut, and may
constrain further shrub expansion in the area. The frequent transition of pixels from
the wet vegetation to the shrub cover class in TMNP also suggests that soil moisture in
low lying areas may provide the conditions necessary for further expansion, as has been
observed in northwestern Canada [81]. Given the ties between shrub cover and snow,
elevational or latitudinal differences in the amount and duration of snow cover may also
be expected to influence shrub distributions.

We note that the accuracy of the predictive shrub change model relies on several as-
sumptions, foremost of which is that relationships between land cover transitions between
time steps (i.e., 1985/89 and 2014), and rates of change, remain constant into the future.
Furthermore, information about local geomorphology, the influence of climate change,
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and species/lifeform-specific data are not explicitly incorporated into our predictions.
Finally, our detection of land cover transitions using post-classification change detection
has several advantages and disadvantages [82]. The technique was beneficial in allowing
us to identify the frequency of transitions across all land cover classes, but the accuracy
of the final product is inherently tied to the initial reclassification of the ecotype map,
which has not yet been validated in the field. Nonetheless, although we caution against
interpreting meaning from individual pixels, the models do provide insight into general
areas and cover classes that are more or less likely to undergo future change.

4.3. Implications for Wildlife, Protected Areas Management, and People

Newly protected areas such as TMNP can benefit from research that extends the state
of knowledge deeper in time because in situ monitoring programs will have only been
recently established. We have shown that substantial changes in land cover have occurred
in TMNP from 1985 to the present, and that further increases in shrub cover can be expected
in the future. The timing of land cover change in TMNP exemplifies the value of combining
remote sensing data with in situ data collection to monitor environmental change in
protected areas. Our analysis showed that substantial changes in land cover had already
occurred prior to the establishment of the park and the initiation of associated monitoring
programs in 2005. Data suggest that vegetation monitoring in low elevation/latitude areas
(<500 m a.s.l. and south of 59.0◦N) with adequate soil moisture and nearby shrub patches
will be suitable for early detection of shrub expansion. It would be beneficial to establish
additional monitoring plots along naturally occurring gradients of soil moisture, elevation,
latitude, and continentality to improve our understanding of the moderating influence
of these factors on shrub expansion in the region. In regard to other land cover changes,
wet vegetation appears to have expanded the most in the vicinity of Komaktorvik River.
This monitoring site could be well-suited for more detailed studies of the mechanisms
underlying the conversion from dry to wet vegetation and from wet vegetation to shrub
cover. Finally, although transitions to dry vegetation were less frequently observed, this
class occupies the greatest area such that even small proportional changes could have
larger cumulative impacts if they occur across the entirety of the park.

The expansion of shrub cover that has already been observed and is predicted to
continue in TMNP has implications for several ecosystem processes. The presence of shrub
canopies has been associated with a decline in the productivity of culturally significant
berry plants through shading [12,15,83], and a reduced abundance of lichen [17,84], an
important winter forage for caribou. Caribou may also be impacted by the displacement of
wet vegetation and expansion of shrubs in low valleys because caribou browse in sedge
meadows early in the growing season. In contrast, animals that make use of shrubs, such
as some species of migratory birds, may see their habitats expand into new areas with
changes in land cover [41,85]. The winter survival of subnivean animals may also benefit
from shrub expansion as snow trapping in dense branch canopies insulates the ground
and offers protection against harsh conditions [73]. On a larger scale, and because shrub
cover has a role in many landscape-level feedbacks [13], shrub expansion will likely impact
rates of carbon and nutrient cycling, and modify hydrological processes. For example,
shrub expansion may alter ground temperatures and associated permafrost conditions [86]
through interactions with the accumulation and duration of snow cover [10,64,87]. Shrub
expansion from 2014 to 2039/43 is expected to be proportionally more modest at 50.9%
than what occurred from 1985/89 to 2015/19 (234.7%), however, implying that even under
improved climate conditions, other controlling factors will ultimately slow spread and
limit the area that can plausibly be converted to shrub cover.

Finally, the past and future land cover change we have documented could also af-
fect Inuit use of the land and park visitation. For example, expansion of shrub thickets
along river valleys can make travel by foot or snowmobile more difficult along these
important corridors, while also providing cover for black bears (Ursus americanus) and
polar bears (U. maritimus), which presents challenges for human safety. Vegetation change



Remote Sens. 2021, 13, 2085 18 of 22

will also affect the availability of important country foods such as caribou, ptarmigan,
and berries, with consequences for food security and the connection of Inuit to the land.
Understanding how these trends may unfold in future could help park managers and Inuit
in the region better adapt and minimize the cultural and socioeconomic consequences of
environmental change.

5. Conclusions

Our research has demonstrated that substantial changes in land cover have occurred
in Torngat Mountains National Park over the past four decades. The most notable changes
include a large increase in the extent of shrub cover in low-latitude valley bottoms, as
shrubs have displaced wet vegetation, and a shift from dry to wet vegetation cover at
mid-elevations. The nature and extent of these changes indicate that climate change, in
addition to biotic (e.g., land cover type, plant–herbivore interactions) and topographic
(e.g., elevation, latitude, continentality) controls, has been the main underlying driver of
ecosystem change. In the future, a further increase in shrub cover is expected to occur with
implications for management of protected areas.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/rs13112085/s1, Figure S1. Depiction of workflow used to generate four-class land cover
rasters (1985/89 to 2015/19) from Landsat composites and topographic data for TMNP. Figure S2.
Depiction of the workflow used to predict transitions to shrub dominance from biotic and topographic
variables using a binomial regression framework. Figure S3. Relative variable importance plot of
the random forest algorithm. Predictors with higher/lower overall importance values contribute
more/less to the accuracy of the classification algorithm. Figure S4. Maps showing changes in
dry vegetation (A) and non-vegetated cover (B) from 1985/89 to 2015/19 in Torngat Mountains
National Park. Figure S5. Shrub change near Ramah Bay shown through (A) repeat photography
and (B) predicted land cover maps of the park during a similar time period. The yellow dot in
(B) is the approximate location of the photographs in (A). Table S1. Variables included in the 24
candidate binomial regression models used in an information theoretic approach to select the most
suitable model for predicting shrub cover change. Table S2. Summary statistics of the comparison
between 24 candidate binomial regression models of shrub change between 1985/89 and 2014, in
order of rank (Model—name of model corresponding to Table 1; df—model degrees of freedom;
logLik—model log-likelihood; AIC—Akaike’s Information Criterion; ∆AIC—change in AIC between
ranked models; Model weight—Akaike weight). Table S3. Locations of existing ground and air
temperature monitoring sites in Torngat Mountains National Park.
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56. Bartoń, K. MuMIn: Multi-Model Inference, R Package. 2020. Available online: https://open.canada.ca/data/en/dataset/7f245e4
d-76c2-4caa-951a-45d1d2051333 (accessed on 1 July 2020).

57. Anderson, D.R. Multimodel Inference. In Model Based Inference in the Life Sciences: A Primer on Evidence; Springer: New York, NY,
USA, 2008; pp. 105–124.

58. Tremblay, B.; Lévesque, E.; Boudreau, S. Recent expansion of erect shrubs in the Low Arctic: Evidence from Eastern Nunavik.
Environ. Res. Lett. 2012, 7, 035501. [CrossRef]

59. Provencher-Nolet, L.; Bernier, M.; Lévesque, E. Short term change detection in tundra vegetation near Umiujaq, subarctic Quebec,
Canada. In Proceedings of the IEEE Geoscience and Remote Sensing Symposium, Québec City, QC, Canada, 13–18 July 2014;
pp. 4668–4670.

60. Larking, T.; Davis, E.; Way, R.; Hermanutz, L.; Trant, A. Recent greening driven by species-specific shrub growth characteristics in
Nunatsiavut, Labrador, Canada. Arct. Sci. 2021. [CrossRef]

61. Myers-Smith, I.H.; Hallinger, M.; Blok, D.; Sass-Klaassen, U.; Rayback, S.A.; Weijers, S.; Trant, A.J.; Tape, K.D.; Naito, A.T.;
Wipf, S.; et al. Methods for measuring arctic and alpine shrub growth: A review. Earth Sci. Rev. 2015, 140, 1–13. [CrossRef]

62. Anthelme, F.; Cornillon, L.; Brun, J.-J. Secondary succession of Alnus viridis (Chaix) DC. in Vanoise National Park, France:
Coexistence of sexual and vegetative strategies. Ann. For. Sci. 2002, 59, 419–428. [CrossRef]

63. Pajunen, A.M.; Okanen, J.; Virtanen, R. Impact of shrub canopies on understorey vegetation in western Eurasian tundra. J. Veg.
Sci. 2011, 22, 837–846. [CrossRef]

64. Domine, F.; Barrere, M.; Morin, S. The growth of shrubs on high Arctic tundra at Bylot Island: Impact on snow physical properties
and permafrost thermal regime. Biogeosciences 2016, 13, 6471–6486. [CrossRef]

65. Kropp, H.; Loranty, M.M.; Natali, S.M.; Kholodov, A.L.; Rocha, A.V.; Myers-Smith, I.H.; Abbott, B.W.; Abermann, J.; Blanc-
Betes, E.; Blok, D.; et al. Shallow soils are warmer under trees and tall shrubs across Arctic and Boreal ecosystems. Environ. Res.
Lett. 2020. [CrossRef]

66. Kemppinen, J.; Niittynen, P.; Virkkala, A.-M.; Happonen, K.; Riihimäki, H.; Aalto, J.; Luoto, M. Dwarf Shrubs Impact Tundra
Soils: Drier, Colder, and Less Organic Carbon. Ecosystems 2021. [CrossRef]

67. Way, R.; Lapalme, C. Does tall vegetation warm or cool the ground surface? Constraining the ground thermal impacts of upright
vegetation in northern environments. Environ. Res. Lett. 2021. [CrossRef]

68. Naito, A.T.; Cairns, D.M. Relationships between Arctic shrub dynamics and topographically derived hydrologic characteristics.
Environ. Res. Lett. 2011, 6, 045506. [CrossRef]

69. Tape, K.D.; Christie, K.; Carroll, G.; O’Donnell, J.A. Novel wildlife in the Arctic: The influence of changing riparian ecosystems
and shrub habitat expansion on snowshoe hares. Glob. Chang. Biol. 2016, 22, 208–219. [CrossRef] [PubMed]

70. Tape, K.D.; Hallinger, M.; Welker, J.M.; Ruess, R.W. Landscape Heterogeneity of Shrub Expansion in Arctic Alaska. Ecosystems
2012, 15, 711–724. [CrossRef]

71. Lloyd, A.H.; Yoshikawa, K.; Fastie, C.L.; Hinzman, L.; Fraver, M. Effects of permafrost degradation on woody vegetation at arctic
treeline on the Seward Peninsula, Alaska. Permafr. Periglac. Process. 2003, 14, 93–101. [CrossRef]

72. van der Kolk, H.-J.; Heijmans, M.M.P.D.; van Huissteden, J.; Pullens, J.W.M.; Berendse, F. Potential Arctic tundra vegetation shifts
in response to changing temperature, precipitation and permafrost thaw. Biogeosciences 2016, 13, 6229–6245. [CrossRef]

73. Berteaux, D.; Gauthier, G.; Domine, F.; Ims, R.A.; Lamoureux, S.F.; Lévesque, E.; Yoccoz, N. Effects of changing permafrost and
snow conditions on tundra wildlife: Critical places and times. Arct. Sci. 2017, 3, 65–90. [CrossRef]

74. Wrona, F.J.; Johansson, M.; Culp, J.M.; Jenkins, A.; Mård, J.; Myers-Smith, I.H.; Prowse, T.D.; Vincent, W.F.; Wookey, P.A.
Transitions in Arctic ecosystems: Ecological implications of a changing hydrological regime. J. Geophys. Res. Biogeosci. 2016, 121,
650–674. [CrossRef]

75. Karlsson, J.M.; Bring, A.; Peterson, G.D.; Gordon, L.J.; Destouni, G. Opportunities and limitations to detect climate-related regime
shifts in inland Arctic ecosystems through eco-hydrological monitoring. Environ. Res. Lett. 2011, 6, 014015. [CrossRef]

76. Baltzer, J.L.; Veness, T.; Chasmer, L.E.; Sniderhan, A.E.; Quinton, W.L. Forests on thawing permafrost: Fragmentation, edge effects,
and net forest loss. Glob. Chang. Biol. 2014, 20, 824–834. [CrossRef] [PubMed]

77. Tape, K.D.; Sturm, M.; Racine, C. The evidence for shrub expansion in Northern Alaska and the Pan-Arctic. Glob. Chang. Biol.
2006, 12, 686–702. [CrossRef]

78. Sturm, M.; McFadden, J.P.; Liston, G.E.; Chapin, F.S., III; Racine, C.H.; Holmgren, J. Snow–Shrub Interactions in Arctic Tundra: A
Hypothesis with Climatic Implications. J. Clim. 2001, 14, 336–344. [CrossRef]

79. Myers-Smith, I.H.; Hik, D.S. Shrub canopies influence soil temperatures but not nutrient dynamics: An experimental test of
tundra snow-shrub interactions. Ecol. Evol. 2013, 3, 3683–3700. [CrossRef]

80. Ropars, P.; Lévesque, E.; Boudreau, S. How do climate and topography influence the greening of the forest-tundra ecotone in
northern Québec? A dendrochronological analysis of Betula glandulosa. J. Ecol. 2015, 103, 679–690. [CrossRef]

81. Cameron, E.A.; Lantz, T.C. Drivers of tall shrub proliferation adjacent to the Dempster Highway, Northwest Territories, Canada.
Environ. Res. Lett. 2016, 11, 045006. [CrossRef]

82. Lu, D.; Mausel, P.; Brondízio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2401. [CrossRef]
83. Boulanger-Lapointe, N.; Gérin-Lajoie, J.; Siegwart Collier, L.; Desrosiers, S.; Spiech, C.; Henry, G.H.R.; Hermanutz, L.; Lévesque, E.;

Cuerrier, A. Berry Plants and Berry Picking in Inuit Nunangat: Traditions in a Changing Socio-Ecological Landscape. Hum. Ecol.
2019, 47, 81–93. [CrossRef]

https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
https://open.canada.ca/data/en/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333
http://doi.org/10.1088/1748-9326/7/3/035501
http://doi.org/10.1139/AS-2020-0031
http://doi.org/10.1016/j.earscirev.2014.10.004
http://doi.org/10.1051/forest:2002016
http://doi.org/10.1111/j.1654-1103.2011.01285.x
http://doi.org/10.5194/bg-13-6471-2016
http://doi.org/10.1088/1748-9326/abc994
http://doi.org/10.1007/s10021-020-00589-2
http://doi.org/10.1088/1748-9326/abef31
http://doi.org/10.1088/1748-9326/6/4/045506
http://doi.org/10.1111/gcb.13058
http://www.ncbi.nlm.nih.gov/pubmed/26527375
http://doi.org/10.1007/s10021-012-9540-4
http://doi.org/10.1002/ppp.446
http://doi.org/10.5194/bg-13-6229-2016
http://doi.org/10.1139/as-2016-0023
http://doi.org/10.1002/2015JG003133
http://doi.org/10.1088/1748-9326/6/1/014015
http://doi.org/10.1111/gcb.12349
http://www.ncbi.nlm.nih.gov/pubmed/23939809
http://doi.org/10.1111/j.1365-2486.2006.01128.x
http://doi.org/10.1175/1520-0442(2001)014&lt;0336:SSIIAT&gt;2.0.CO;2
http://doi.org/10.1002/ece3.710
http://doi.org/10.1111/1365-2745.12394
http://doi.org/10.1088/1748-9326/11/4/045006
http://doi.org/10.1080/0143116031000139863
http://doi.org/10.1007/s10745-018-0044-5


Remote Sens. 2021, 13, 2085 22 of 22

84. Chagnon, C.; Boudreau, S. Shrub canopy induces a decline in lichen abundance and diversity in Nunavik (Québec, Canada). Arct.
Antarct. Alp. Res. 2019, 51, 521–532. [CrossRef]

85. Boelman, N.T.; Gough, L.; Wingfield, J.; Goetz, S.; Asmus, A.; Chmura, H.E.; Krause, J.S.; Perez, J.H.; Sweet, S.K.; Guay, K.C.
Greater shrub dominance alters breeding habitat and food resources for migratory songbirds in Alaskan arctic tundra. Glob.
Chang. Biol. 2015, 21, 1508–1520. [CrossRef] [PubMed]

86. Pelletier, M.; Allard, M.; Levesque, E. Ecosystem changes across a gradient of permafrost degradation in subarctic Québec
(Tasiapik Valley, Nunavik, Canada). Arct. Sci. 2019, 5, 1–26. [CrossRef]

87. Grünberg, I.; Wilcox, E.J.; Zwieback, S.; Marsh, P.; Boike, J. Linking tundra vegetation, snow, soil temperature, and permafrost.
Biogeosciences 2020, 17, 4261–4279. [CrossRef]

http://doi.org/10.1080/15230430.2019.1688751
http://doi.org/10.1111/gcb.12761
http://www.ncbi.nlm.nih.gov/pubmed/25294359
http://doi.org/10.1139/as-2016-0049
http://doi.org/10.5194/bg-17-4261-2020

	Introduction 
	Methods 
	Study Area 
	General Approach 
	Preparation of Spatial Data 
	Land Cover Map 
	Landsat Imagery 
	Topographic Rasters 

	Hindcasting (1985/2014) and Simulating (2015/2019) Land Cover Using Random Forest Classification 
	Change Detection 
	Predicting Future Shrub Expansion 

	Results 
	Random Forest Algorithm 
	Temporal Changes in Land Cover Class 
	Shrub Cover Class 
	Dry Vegetation Class 
	Non-Vegetated Class 
	Wet Vegetation Class 

	Spatial Changes in Land Cover Class 
	Predicting Changes in Shrub Cover 
	Vegetation Change at Existing Monitoring Sites 

	Discussion 
	Temporal and Spatial Changes in Land Cover 
	Future Shrub Expansion in TMNP 
	Implications for Wildlife, Protected Areas Management, and People 

	Conclusions 
	References

