

FINAL REPORT

Phase II Environmental Site Assessment Pine Lake Dry Dump, Wood Buffalo National Park Alberta

PARKS CANADA

PROJECT NO. 1013548

PROJECT NO. 1013548

FINAL REPORT TO: Parks Canada 1550, 635 – 8th Avenue SW Calgary, AB T2P 3M3

FOR: Phase II Environmental Site Assessment Pine Lake Dry Dump, Wood Buffalo National Park Alberta

November 15, 2006

Jacques Whitford Limited Suite 300, 805 – 8th Avenue SW Calgary, Alberta T2P 1H7

> Phone: 403-263-7113 Fax: 403-263-7116

www.jacqueswhitford.com

EXECUTIVE SUMMARY

Jacques Whitford Limited (Jacques Whitford) was retained by Parks Canada (Parks) to conduct a Phase II Environmental Site Assessment (ESA) at the Pine Lake Dry Dump (Pine Lake), located in Wood Buffalo National Park (WBNP) in Alberta. The scope of work required the assessment of potential impacts in soil and groundwater related to former aviation fuel storage in a wooded are near Pine Lake. The Chemicals of Concern (COCs) identified for the site were petroleum hydrocarbons, volatile organic compound (VOCs), metals and glycols. The site assessment included the excavation of three (3) test pits and drilling of three (3) boreholes (each completed as monitor wells). The following is a summary of the Phase II ESA:

- 1. The assessment guidelines for the site are the CCME Guidelines (2005), CCME CWS (2001) and AENV PST Guidelines for Parkland/Residential land use and fine-grained soil.
- 2. Site stratigraphy observed during drilling consisted of sand and silty sand overlying silty clay to a maximum depth of 11.3 mbg.
- 3. The groundwater wells installed at the site were dry at the time of monitoring. No phase-separated liquids or elevated vapours were detected in any of the monitoring wells. The anticipated groundwater flow direction is to the south.
- 4. Petroleum hydrocarbons, VOCs, metals and glycol in soil were either not detected or detected at concentrations that satisified the applicable guidelines;
- 5. It is unlikely that groundwater and the adjacent aquatic receptors (Salt River) have been adversely affected by the residual impacts at the Pine Lake site based on the detected concentrations of petroleum hydrocarbons and metals measured at the Site.

Based on the observations made and analytical results obtained, Jacques Whitford offers the following recommendation:

 Detected concentrations of hydrocarbons and metals in soil satisfied the applicable guidelines however, the presence of these contaminants of concern result in scoring of the Site as a Class 3 site (a score of 44.7) using the FCSAAP Contaminated Sites Classification System indicating that action may be required. Jacques Whitford recommends that surface stained soil be removed from the site and the abandoned drums of aviation fuel at the site be disposed in accordance with regulations. No further investigation is recommended at the site at this time.

i.

Table of Contents

EXECUTIV	E SUMMARY	i
1.0 IN	TRODUCTION	1
1.1	General	1
1.2	Objectives	1
2.0 S	COPE OF WORK	1
3.0 B	ACKGROUND	2
3.1	General	2
3.2	Site Description	2
3.3	Local Setting	3
3.4	Geology	
3.5	Topography and Drainage	3
4.0 R	EGULATORY FRAMEWORK	3
4.1	CCME Canadian Environmental Quality Guidelines	4
4.2	CCME Canada-Wide Standards	
4.3	Alberta Environment Risk Management Guidelines for Petroleum Storage	
	Tank Sites	5
50 S	TE INVESTIGATION RESULTS	6
5.1	Health and Safety	
5.2	Soil Assessment	
5.3	Test Pit Excavation and Borehole Drilling	
5.4	Soil Stratigraphy	
5.5	Vapour Screening	
5.6	Soil Laboratory Analysis	
5.7	Soil Hydrocarbon Chemistry	
5.8	Soil VOCs Chemistry	8
5.9	Soil Metals Chemistry	8
5.10	Soil Glycol Chemistry	8
5.11	Groundwater Assessment	8
	Groundwater Monitoring	
	Quality Assurance/Quality Control	
5.14	FCSAAP Contaminated Sites Classification System	.10
6.0 D	SCUSSION	.10
7.0 C	ONCLUSIONS	.10
8.0 R	ECOMMENDATIONS	.10
9.0 C	LOSURE	.11

List of Tables

Table 1:	Soil Vapour Measurements	. Appendix B
Table 2:	Soil Analytical Results – Petroleum Hydrocarbons Constituents	. Appendix B
Table 3:	Soil Analytical Results – Volatile Organic Compounds Vocs)	. Appendix B
Table 4:	Soil Analytical Results – Metals	. Appendix B
Table 5:	Soil Analytical Results – Glycols	. Appendix B
Table 6:	Groundwater Monitoring Results	. Appendix B
Table 7:	QA/QC Samples – Soil Analytical Results – PHCs	. Appendix B
Table 8:	QA/QC Samples – Groundwater Analytical Results – PHCs	. Appendix B
Table 9:	QA/QC Samples – Groundwater Analytical Results – PAHs	. Appendix B

List of Drawings

Drawing 1:	Site Location Plan Appendix A
Drawing 2:	Site Plan Appendix A

List of Appendices

APPENDIX A	Drawings
APPENDIX B	Analytical Summary Tables and Laboratory Certificates of Analysis
APPENDIX C	Methodology
APPENDIX D	Borehole/Monitor Well Records
APPENDIX E	Site Photographs
APPENDIX F	FCSAAP Scoring Sheets

iii

1.0 INTRODUCTION

1.1 General

Jacques Whitford Limited (Jacques Whitford) was retained by Parks Canada (Parks) to conduct a Phase II Environmental Site Assessment (ESA) at the Pine Lake Dry Dump (Pine Lake), located in Wood Buffalo National Park (WBNP) in Alberta. Drawing 1 in **Appendix A** provides general location and topography of the area surrounding the Pine Lake. The work at this site was completed as per Jacques Whitford Technical and Cost Proposals (No. 1012828), May 15, 2006 in response to the Parks' Request for Proposal (RFP) and Statement of Work (SOW) for Contaminated Sites Assessments (Solicitation No. 5P420-06-5007). The scope of work required the assessment of potential impacts in soil and groundwater related to former aviation fuel storage in a wooded are near Pine Lake, herein referred to as the 'Site'.

This report is organized in nine sections. Section 1 presents an introduction and the purpose of the assessment. Section 2 provides the scope of work. Section 3 discusses the background of the site. Section 4 explains the regulatory guidelines and their applicability. Section 5 provides the results of the field work and Section 6 discusses the results of the assessment. Section 7 provides conclusions and recommendations are provided in Section 8. Section 9 is a closure statement. Supporting information is provided in the appendices following Section 9.

1.2 Objectives

The objective of this project was to assess potential soil and groundwater impacts resulting from historical storage of expired 45 gallon drums of Jet A and Jet B fuel from the Wood Buffalo National Park Fire Management program. Potential chemicals of concern (COCs) identified at the site included: petroleum hydrocarbons, volatile organic compounds (VOCs), metals and glycols. Jacques Whitford is unaware of any previous assessment work at the site.

2.0 SCOPE OF WORK

To meet the objectives discussed above, the ESA included:

- 1. Development of a work plan for an intrusive site investigation to assess potential impacts related to the potential COCs at the site;
- 2. Completion of an intrusive site assessment designed to obtain the information necessary to meet the objectives described above including the following:
 - Private and public underground utility locates prior to ground disturbance;
 - Advancement of a total of three(3) boreholes, each completed as monitor wells and the excavation of three (3) test pits in the area of the former drum cache;
 - Field screening and measurement of combustible and volatile soil vapour concentrations in soil samples collected during the borehole program;

- Submission of select soil samples from boreholes for laboratory analysis of petroleum hydrocarbon parameters, VOCs, metals, glycols and grain size;
- Monitoring of the newly installed and previously installed monitor wells to determine depth to groundwater, hydraulic conductivity, combustible vapour concentrations, volatile vapour concentrations, and presence of light non-aqueous phase liquids (LNAPL) or dense non-aqueous phase liquids (DNAPL); and
- Collection of groundwater samples from each of the newly installed monitor wells and submission of each to Maxxam for laboratory analysis of petroleum hydrocarbon parameters VOCs, and glycols.
- 3. Submission of a report summarizing the findings of the field investigation and a discussion of the results in the context of the applicable Canadian Council of Ministers of the Environment (CCME) and Alberta Environment (AENV) guidelines.

3.0 BACKGROUND

3.1 General

Pine Lake is situated in WBNP in Alberta, approximately 60 km south of Fort Smith, Northwest Territories. The WBNP headquarters is located in Fort Smith. The site is accessible via a gravel road from Fort Smith and short access side roads leading west off the main gravel road. The site was formerly used as an aviation fuel cache (drums) for helicopter operations in the Park. It is unknown if drums of other products were ever stored at the site. The site is in a wooded area approximately 100 m west of main gravel access road and also includes a refuse burning area for the nearby Pine Lake fire fighting facility (approximately 5 km south of the site).

3.2 Site Description

The Pine Lake site is located in a relatively remote location in WBNP with no nearby dwellings. The site consists of an access side road leading from the main access road. The access side road terminates at a refuse burning area (from Park fire fighting operations nearby). The former drum cache is located opening in the woods on the south side of the refuse burning area. Forest surrounded the refuse burning area and former drum cache. At the time of the site visit, five (5) abandoned drums were located at the former drum cache and one (1) abandoned drum was located on the west side of the access road near the refuse burning area. One of the drums was marked as Jet A-1 and one as Jet B (aviation fuel). Labels were not observed on the other drums as they were in poor condition and there was concern they could leak if rolled, turned, etc. All of the drums contained liquid, but none were full. The former drum cache area was covered in grass and other low-growth vegetation and surrounded by undeveloped forest. Several small areas (less than 1 m²) of surficial staining were observed at the site. Soil at the stained areas exhibited a moderate to strong weathered hydrocarbon odour. No buildings, structures or tanks were observed at the site. Potable water systems (wells or municipal) were not observed in the area.

3.3 Local Setting

3.4 Geology

Surficial Geology in the Pine Lake area consists of sand, sandy silts and clay. Based on available geology maps, bedrock in the Pine Lake area comprises of limestone of the Nyarling Formation¹. Bedrock was not encountered during this investigation.

3.5 Topography and Drainage

Local topography at the Pine Lake site consists of relatively flat terrain with a slight slope towards the refuse burning area. In the wooded area beyond the Site, moderate slopes lead to the south and east (towards the main access road). No engineered drainage (catch basins, drains, manholes, etc.) were observed at the site.

This site assessment was completed during the summer. No runoff or standing water was observed at the site. Based on site observations, precipitation in the area would tend to infiltrate. Groundwater was not encountered during the investigation. The nearest surface water body is the Salt River located approximately 250 to 500 m to the south of the site.

4.0 **REGULATORY FRAMEWORK**

The guidelines referenced in this report are summarized in the following subsections. Applicable regulatory guidelines/standards/criteria are presented in the analytical summary tables in **Appendix B** for comparison to the various parameters/media investigated as part of this assessment. The site is located within WBNP and subsequently falls within Federal jurisdiction. The analytical results were evaluated in the context of the following regulatory guidelines:

- Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines, 2005 (CCME Guidelines (2005)); and
- CCME Petroleum Hydrocarbons in Soil Canada Wide Standard (CWS), April 2001 (CCME CWS {2001}).

In addition, the following provincial guidelines were referenced in the case where CCME guidelines have yet to be developed:

 Alberta Environment (AENV) AENV Risk Management Guidelines for Petroleum Storage Tank Sites, 2001 (AENV PST Guidelines);

¹ February 15, 1999. *Geological Map of Alberta*. Alberta Energy and Utilities Board/Alberta Geological Survey, 1:1,000,000

4.1 CCME Canadian Environmental Quality Guidelines

Benzene, toluene, ethylbenzenes and xylene petroleum hydrocarbons, VOCs, metals and glycols analytical results in soil and/or groundwater were evaluated using the CCME Guidelines (2005). The CCME Canadian Environmental Quality Guidelines provide limits for contaminants in soil and water and is intended to maintain, improve, and/or protect environmental quality and human health at contaminated sites in general. These criteria include numerical values for the assessment and remediation of soil and water in the context of agricultural, residential/parkland, commercial, and industrial land uses. Environmental soil and water quality guidelines are derived using toxicological data to determine the threshold level to key receptors. These criteria include the recommended Canadian Soil Quality Guidelines (SQG) and the Canadian Water Quality Guidelines (CWQG). The CCME Criteria include two sets of numerical values for soil and water quality: assessment criteria and remediation criteria. The assessment criteria are approximate background concentrations or approximate analytical detection limits for contaminants in soil and water. Remediation criteria are intended for generic use and do not address site-specific conditions. They are considered generally protective of human and environmental health for specified uses of soil and water at impacted sites.

The selection of soil guidelines is based on land use; the current and foreseeable land use at the site is parkland therefore the CCME SQG for Residential/Parkland SQGs are recommended for evaluation of environmental impacts to soils. The selection of guidelines for BTEX constituents is also based on soil type and depth, and consideration of human health and ecological receptor pathways. In general, the soil type has been defined as coarse-grained for surface soils (<1.5 meters below grade) and fine-grained for sub-surface soil (>1.5 meters below grade) based on a laboratory grain-size analysis. Guidelines have been established for human soil ingestion, dermal contact, vapour inhalation, protection of groundwater for potable use and freshwater aquatic life, and ecological soil contact. The human vapour inhalation pathway is deemed to not be applicable as there are no structures in the vicinity of the site. The protection of potable water is not considered to be applicable; groundwater aquifers underlying the site are not currently used for potable water and are unlikely to be developed in the future based on the current and foreseeable land use. In addition, a water well search of the area surrounding the sites indicated that there are no active water wells within a 500 m radius of the site. The human soil ingestion, dermal contact, protection of groundwater for freshwater aquatic life and ecological soil contact pathways are considered to be the applicable to the site. The most stringent guidelines for these pathways have been selected for comparison of results at the Site.

Groundwater was not found at the Site, however, the CCME guidelines for the protection of Freshwater Aquatic Life (FAL) are deemed applicable for comparison of groundwater results as a surface water body is within 300 m downgradient of the site. There are currently no Federal guidelines for petroleum hydrocarbon fractions and xylenes in groundwater for the protection of FAL. A discussion on reference guidelines for these parameters is provided in Section 4.3.

4.2 CCME Canada-Wide Standards

The CCME CWS (2001) are typically used as a preliminary means of evaluating petroleum hydrocarbons in soil at federal sites. CWS criteria are dependent on the nature of the hydrocarbon type. That is, the CWS group petroleum hydrocarbons into four practical fractions (F1, F2, F3 and F4)

with different criteria for each. CWS guidelines have been developed based on land use, soil type and soil depth. Different generic levels exist for "Agricultural", "Residential", "Commercial" and "Industrial" sites and are based on coarse-grained soil versus fine-grained soil. The standards also change with depth of soil as related to exposure. Allowable concentrations for surface soil (less than 1.5 metres below grade) are different from those for subsurface soil (that which is deeper than 1.5 metres below grade).

Concentrations of volatile and extractable petroleum hydrocarbons (Fractions F1 to F4) in soil were compared to the CCME (2001) CWS based on Residential/Parkland SQG and coarse-grained for surface soils (<1.5 meters below grade) and fine-grained for sub-surface soil (>1.5 meters below grade). Similar to the CCME Guidelines (2005), the most stringent guideline of the applicable the CCME CWS (2001) guidelines (human soil ingestion, dermal contact, protection of groundwater for freshwater aquatic life and ecological soil contact) have been selected for comparison of results at the Site.

4.3 Alberta Environment Risk Management Guidelines for Petroleum Storage Tank Sites

In the event that groundwater is sampled at the Site, there are currently no Federal guidelines for petroleum hydrocarbon fractions in groundwater. The AENV Risk Management Guidelines for Petroleum Storage Tank Sites, 2001 should be used as reference guidelines as the potential impacts at the Site are the result of storage of fuel drums. These guidelines are the generally accepted criteria for the assessment and remediation of petroleum storage tank sites in Alberta are the AENV Risk Management Guidelines for Petroleum Storage Tank Sites, 2001.

The AENV Guidelines have been developed through the use of a risk-based approach with respect to human health, safety and the environment. The remediation process essentially consists of the following alternatives:

- Remediate to the strictest de minimus criteria which allows for a sites unrestricted land use;
- Undertake a Land Use Assessment and remediate to specified generic criteria; or
- Conduct a risk assessment to develop site-specific remediation criteria and/or risk management plan.

The remediation criteria are dependent on the nature of the hydrocarbon type, land use and soil type. That is, different criteria exist based on land use (Residential versus Commercial/Industrial) and soil grain-size. Different criteria also exist considering freshwater aquatic life as a potential receptor and for groundwater ingestion as a human exposure pathway.

The AENV Risk Management Guidelines for Petroleum Storage Tank Sites for groundwater at residential sites (generic, fine-grained soil) and for the groundwater ingestion pathway should be used for comparison to groundwater water F1 and F2 hydrocarbon fractions and xylenes in the event that groundwater is sampled at the Site.

5.0 SITE INVESTIGATION RESULTS

The site assessment was completed on June 19 (test pit excavation) and June 20 (borehole drilling), 2006 by Stephen Bourn, P.Eng. of Jacques Whitford. Groundwater monitoring was completed by Jeff Hunter, C.E.T. on July 12, 2006. Ms. Sharon Irwin of Parks Canada was onsite during test pit excavation activities on June 20, 2006.

Prior to conducting the site assessment, the drums at the site were moved to the refuse burning area to facilitate site access for backhoe and drill rig. The site assessment included the excavation of three (3) test pits and drilling of three (3) boreholes (each completed as monitor wells) at the locations shown on Drawing No. 2 in **Appendix A**. The locations were selected based on visual observation of surface staining and location of the abandoned drums. Field methodologies are discussed in detail in **Appendix C**. Photographs taken during the assessment are provided in **Appendix D**. Drilling services and monitor well materials were provided by Mobile Augers and Research Limited of Edmonton, AB. Armagh Construction of Fort Smith provided excavation services for test pitting activities.

5.1 Health and Safety

A project specific Health and Safety Plan (HSP) was prepared in conjunction with the project Work Plan and submitted to Parks for review prior to conducting the site assessment. A copy of the HSP was maintained on-site for the duration of the site assessment. Prior to conducting the site assessment, a 'tailgate' health and safety meeting was completed with the contractor and client. The contractor was made aware of the HSP, the location of emergency contract numbers and site specific hazards. A satellite telephone was maintained on-site for the duration of the site assessment. Daily health and safety meetings were conducted (the work at this site was completed along with assessment of other Parks sites over several days) to review previously identified hazardous and to identify any new concerns.

Jacques Whitford field personnel complied with applicable internal Safe Work Practices for the field tasks completed. Public utility locates were completed by Alberta1stCall prior to initiation of the field work.

5.2 Soil Assessment

5.3 Test Pit Excavation and Borehole Drilling

Three (3) test pits were advanced at the site to a maximum depth of 3.0 m below grade (mbg) using a rubber tire backhoe. Three (3) boreholes were advanced at the site to a maximum depth of 11.3 m below grade (mbg) using a stand augers on a truck mounted drill rig. Each borehole was completed as monitor well to facilitate groundwater sampling and monitoring.

Soil samples were collected continuously from test pits and boreholes at 0.75 m intervals or based field observations of changes in soil composition and/or the apparent presence of impacts. Samples were collected directly from open test pits and augers (during borehole drilling) for logging material characteristics, monitoring of soil vapour levels and potential laboratory analysis.

5.4 Soil Stratigraphy

Site stratigraphy observed during drilling consisted of sand and silty sand overlying silty clay to a maximum depth of 11.3 mbg. Detailed descriptions of the soil conditions encountered are presented in the Test Pit and Borehole/Monitoring Well Records in **Appendix E**.

5.5 Vapour Screening

Field screening for the presence of combustible soil vapours (CSV) in the soil samples was conducted using a portable GasTechtor 1238ME (GasTechtor) calibrated to a hexane standard with methane elimination and volatile soil vapours (VSV) using a portable photoionization detector (PID) calibrated to an isobutylene standard.

CSV concentrations ranged from <10 parts per million (ppm) to 50 ppm. VSV concentrations measured in soil samples ranged from a maximum of 3.8 ppm to 28.9 ppm. The soil sample locations and field vapour screening results are presented on the In Table 1 in **Appendix B**.

There are no regulatory criteria for combustible soil vapours, however, elevated vapour concentrations (CSV greater than 500 ppm and VSV greater than 25 ppm) are generally indicative of the presence of volatile petroleum products (i.e., gasoline, and to a lesser extent, diesel and fuel oil). Concentrations vary with both hydrocarbon type and age, and it should be noted that the readings are intended as a field screening tool to provide only a qualitative indication of hydrocarbon levels and are not directly equivalent to soil analytical results.

5.6 Soil Laboratory Analysis

Six (6) soil samples were submitted to Maxxam in Maxxam Analytics (Maxxam) in Edmonton, AB for analysis of petroleum hydrocarbons and VOCs. Three (3) of the above referenced samples were analysed for metals and two (2) were analysed for glycols. Surface (grade to 1.5 mbg) and sub-surface (>1.5 mbg) composite soil samples (one of each), comprised of sub-samples from each borehole and test pit were submitted for grain size analysis. The grain size analysis indicated that surface soils were defined as coarse grained and subsurface soils were defined as fine grained. Samples submitted for analysis were generally taken from suspected worst case zones of contamination, as determined by field observation and field vapour screening results. The purpose of grain size analysis was for selection of guidelines.

5.7 Soil Hydrocarbon Chemistry

Six (6) soil samples were submitted for petroleum hydrocarbon analysis. Soil analytical results are summarized in Table 2 in **Appendix B**. Copies of Laboratory Certificates of Analyses are also included in **Appendix B**. The results indicate that petroleum hydrocarbon constituents (BTEX and F1-F4) were either not detected or satisfied the applicable guidelines.

5.8 Soil VOCs Chemistry

Six (6) soil samples were submitted for VOC analysis. Soil analytical results are summarized in Table 3 in **Appendix B**. Copies of Laboratory Certificates of Analyses are also included in **Appendix B**. VOCs were not detected in any of the samples submitted for analysis.

5.9 Soil Metals Chemistry

Three (3) soil samples were submitted for metals analysis. Soil analytical results are summarized in Table 4 in **Appendix B**. Copies of Laboratory Certificates of Analyses are also included in **Appendix B**. Metals parameters were either not detected or satisfied the applicable guidelines in all of the samples submitted for analysis.

5.10 Soil Glycol Chemistry

Two (2) soil samples were submitted for glycols analysis. Soil analytical results are summarized in Table 5 in **Appendix B**. Copies of Laboratory Certificates of Analyses are also included in **Appendix B**. Glycols were not detected in either of the samples submitted for analysis.

5.11 Groundwater Assessment

Monitoring wells were installed in the three (3) boreholes drilled at the site. The monitoring wells were installed to determine groundwater flow direction and gradient, determine the hydraulic conductivity of soil at the site and monitor the site for the presence of free phase petroleum hydrocarbons and sample the groundwater for laboratory analysis.

5.12 Groundwater Monitoring

The newly installed groundwater monitoring wells were monitored for combustible and/or volatile headspace vapour concentrations, depth to groundwater and the presence of phase-separated petroleum hydrocarbons on July 12, 2006. The monitoring results are summarized in Table 6, **Appendix B**.

Combustible headspace concentrations measured with a Gastech 1238ME in the monitoring wells were 100 ppm and is not considered to be significant. Volatile headspace concentrations measured with a PID in the monitoring wells ranged from 0.5 ppm to 2.7 ppm and is not considered to be significant. No phase-separated liquids or were detected in any of the monitoring wells as the wells were dry during the monitoring event. It should be noted that field observations during drilling indicated that the groundwater table had not been reached. It was decided in consultation with Parks that it was very unlikely that potential impacts at the site had migrated to a depth below 11.3 mbg and therefore the borehole drilling was terminated at this depth. The anticipated groundwater flow direction is to the south.

5.13 Quality Assurance/Quality Control

The quality assurance/quality control (QA/QC) program for this project was combined two other site assessments completed simultaneously for Parks in the WBNP and Fort Smith by Jacques Whitford. The purpose of the QA/QC program is to assess the reliability of the data for the purposes of the site assessment. The review consisted of evaluating sample collection/handling methodology, holding times, general laboratory comments, field (blind) duplicate samples, and laboratory duplicate samples. Samples collected during the site investigation were submitted to an accredited by the Canadian Association for Environmental Analytical Laboratories (CAEAL).

All samples were collected following strict Jacques Whitford sampling procedures. Samples were uniquely labelled and control was maintained through use of chain of custody forms. All samples were collected in laboratory supplied containers and preserved in insulated coolers. Appropriate sampling QA/QC procedures were adhered to at all times.

The relative percent difference (RPD) is used to evaluate the sample result variability and is calculated by the following equation:

$$RPD = \left[\frac{|S1 - S2|}{S3}\right] \times 100$$

where:

RPD = relative percent difference
S1 = original soil or groundwater sample concentration
S2 = duplicate soil or groundwater sample concentration
S3 = average concentration = (S1 + S2)/2

Average RPD values of less than 100% for soil samples and 30% for groundwater samples are considered an indication of acceptable duplicate sample variability. For groundwater samples, an RPD of greater than 30% may reflect difference in sample turbidity or variance in the sampling procedures. Individual RPD values greater than 50% are not considered to reflect acceptable variability. RPD values are not used to evaluate those compounds that are present at concentrations less than five times the method detection limit (MDL).

The QA/QC analytical results are included in the Tables 7 to 9 in **Appendix B**. As shown on Table 7, **Appendix B**, the RPD value was 6% for the field duplicate soil sample analyzed for petroleum hydrocarbon parameters. Based on this result, the analytical data for the soil samples is considered technically and statistically valid. During the collection of the groundwater samples, a field duplicates were collected. As shown on Table 8 and 9, **Appendix B**, the RPDs for petroleum hydrocarbon parameters ranged from 20% to 40% and the RPDs for the detected PAHs parameter was 67%. The generally acceptable duplicate sample variability is 30% for groundwater samples, however the concentrations of hydrocarbons and PAHs are less than five times the method detection limit (MDL) and therefore these RPD values are not recommended to be used to evaluate the variability of those compounds.

5.14 FCSAAP Contaminated Sites Classification System

The Site has been scored utilizing the FCSAAP Contaminated Sites Classification System. The Site is classified as a Class 3 site with a score of 44.7 indicating that action may be required. The evaluation sheets are provided in **Appendix F**.

6.0 DISCUSSION

Based the results from this assessment, impacts at the Pine Lake Dry Dump Site appear to be limited to surficial hydrocarbon staining resulting from residual aviation fuel stored at the Site. It is unlikely that groundwater and the adjacent aquatic receptors (Salt River) have been adversely affected by the residual impacts at the Pine Lake site based on the detected concentrations of petroleum hydrocarbons and metals measured at the Site.

7.0 CONCLUSIONS

The following is a summary of the Phase II ESA:

- 1. The assessment guidelines for the site are the CCME Guidelines (2005), CCME CWS (2001) and AENV PST Guidelines for Parkland/Residential land use and fine-grained soil.
- 2. Site stratigraphy observed during drilling consisted of sand and silty sand overlying silty clay to a maximum depth of 11.3 mbg.
- 3. The groundwater wells installed at the site were dry at the time of monitoring. No phase-separated liquids or elevated vapours were detected in any of the monitoring wells. The anticipated groundwater flow direction is to the south.
- 4. Petroleum hydrocarbons, VOCs, metals and glycol in soil were not detected or detected at concentrations that satisfied the applicable guidelines.
- 5. It is unlikely that groundwater and the adjacent aquatic receptors (Salt River) have been adversely affected by the residual impacts at the Pine Lake site based on the detected concentrations of petroleum hydrocarbons and metals measured at the Site.

8.0 **RECOMMENDATIONS**

Based on the observations made and analytical results obtained, Jacques Whitford offers the following recommendation:

 Detected concentrations of hydrocarbons and metals in soil satisfied the applicable guidelines however, the presence of these contaminants of concern result in scoring of the Site as a Class 3 site (a score of 44.7) using the FCSAAP Contaminated Sites Classification System indicating that action may be required. Jacques Whitford recommends that surface stained soil be removed from the site and the abandoned drums of aviation fuel at the site be disposed in accordance with regulations. No further investigation is recommended at the site at this time.

9.0 CLOSURE

This report has been prepared for the sole benefit of Parks Canada. The report may not be used by any other person or entity without the express written consent of Jacques Whitford and Parks Canada.

Any use, which a third party makes of this report, or any reliance on decisions made based on it, is the responsibility of such third parties. Jacques Whitford accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

The information and conclusions contained in this report are based upon work undertaken by trained professional and technical staff in accordance with generally accepted engineering and scientific practices current at the time the work was performed. Conclusions presented in this report should not be construed as legal advice.

The conclusions presented in this report represent the best technical judgment of Jacques Whitford based on the data obtained from the work. The conclusions are based on the site conditions encountered by Jacques Whitford at the time the work was performed at the specific testing and/or sampling locations, and can only be extrapolated to an undefined limited area around these locations. The extent of the limited area depends on the soil and groundwater conditions, as well as the history of the site reflecting natural, construction and other activities. In addition, analysis has been carried out for a limited number of chemical parameters, and it should not be inferred that other chemical species are not present. Due to the nature of the investigation and the limited data available, Jacques Whitford cannot warrant against undiscovered environmental liabilities.

If any conditions become apparent that differ significantly from our understanding of conditions as presented in this report, we request that we be notified immediately to reassess the conclusions provided herein.

This report was prepared by Stephen Bourn, P.Eng. and Steven Mossman, P.Eng. Senior technical review was completed by Stella Brimo, B.Comm., M.Sc. We trust that this information meets your requirements at this time. If you have any questions or concerns, please do not hesitate to contact the undersigned.

Yours truly,

JACQUES WHITFORD LIMITED

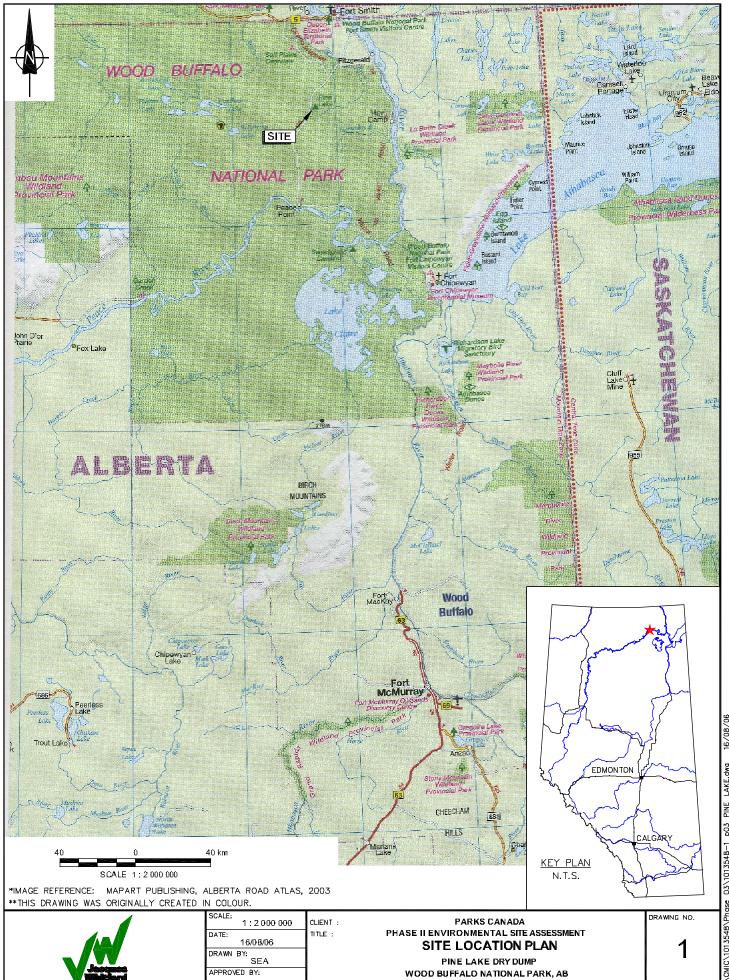
Original signed by Stephen Bourn

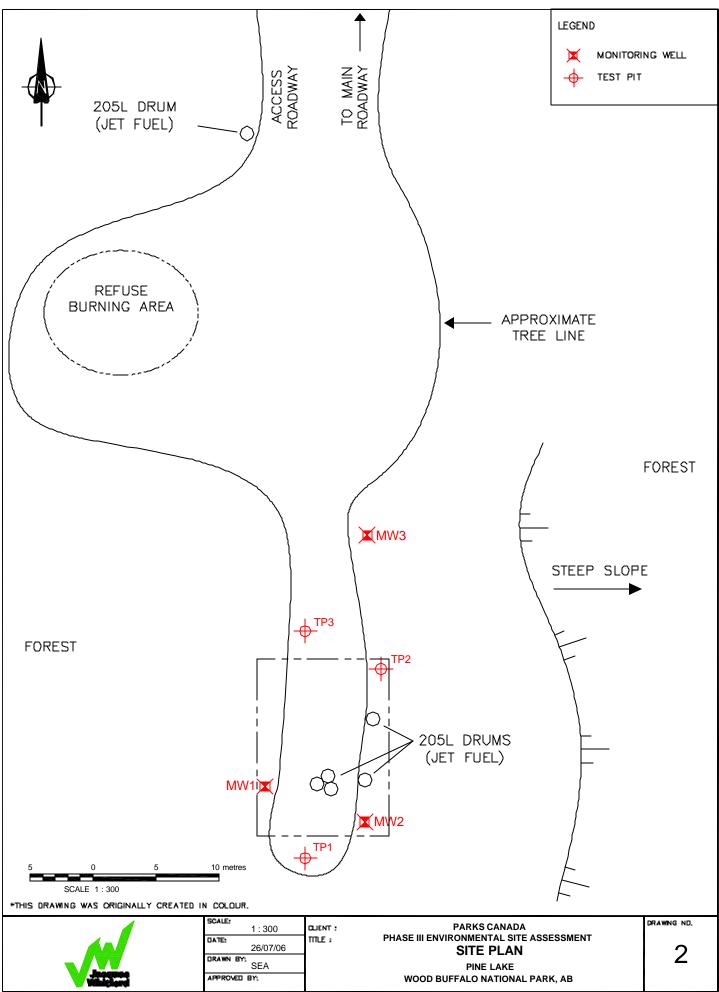
Original signed by Steven Mossman

Stephen Bourn, P.Eng. Site Assessor Steven Mossman, P.Eng. Project Engineer

Original signed by Stella Brimo

Stella Brimo, B.Comm., M.Sc. Group Leader, Site Assessment and Remediation


SB:SM:SB/cc



APPENDIX A

Drawings

CMIC\1013548\Phase_D3\1013548-2_p03.dvg 25/07/D6

APPENDIX B

Analytical Summary Tables and Laboratory Certificates of Analysis

Sample ID	Sample Depth	CSV ¹	VSV ²
PL-TP1	1		
SA1	0 - 0.4	15	6.9
SA2	0.4 - 1.2	15	6.8
SA3	1.2 - 2	5	7.8
SA4	2 - 2.8	15	4.3
PL-TP2	· · ·		
SA1	0 - 0.5	10	6.8
SA2	0.6 - 1.2	15	8.3
SA3	1.5 - 3	50	8.6
PL-TP3			
SA1	0 - 0.6	5	8.9
SA2	0.6 - 1.5	35	6.6
SA3	1.5 - 2.9	10	10.2
PL-MW1			
SA1	0 - 0.75	10	4
SA2	0.75 - 1.5	10	10.3
SA3	1.5 - 2.25	10	4.3
SA4	2.25 - 3	5	5.4
SA5	3 - 3.75	5	5.2
SA6	3.75 - 4.5	10	5.2
SA7	4.5 - 5.25	5	4.3
SA8	5.25 - 6	15	8.6
SA9	6 - 6.75	10	7.3
SA10	6.75 - 7.5	10	6.8
SA11	7.5 - 8.25	10	7
SA12	8.25 - 9	10	12.2
SA13	9 - 9.75	5	6.9
SA14	9.7 - 10.5	10	7.2
SA15	10.5 - 11.25	10	5.7
PL-MW2			
SA1	0 - 0.75	10	8.3
SA2	0.75 - 1.5	10	9.2
SA3	1.5 - 2.25	10	6.8
SA4	2.25 - 3	15	6.7
SA5	3 - 3.75	10	4.3
SA6	3.75 - 4.5	10	2.8
SA7	4.5 - 5.25	5	5.2
SA8	5.25 - 6	5	6.8
SA9	6 - 6.75	10	7.3
SA10	6.75 - 7.5	10	6.3
SA11	7.5 - 8.25	10	4.9
SA12	8.25 - 9	5	4.8
SA13	9 - 9.75	5	5.5
SA14	9.75 - 10.5	5	6.8
SA15	10.5 - 11.25	10	4.2

Table 1: Soil Vapour Measurements

Sample ID	Sample Depth	CSV ¹	VSV ²
IW3			
SA1	0 - 0.75	5	6.4
SA2	0.75 - 1.5	15	7.3
SA3	1.5 - 2.25	15	7.4
SA4	2.25 - 3	10	8.2
SA5	3 - 3.75	5	8.2
SA6	3.75 - 4.5	10	6.6
SA7	4.5 - 5.25	10	3.8
SA8	5.25 - 6	15	4.8
SA9	6 - 6.75	15	6.6
SA10	6.75 - 7.5	10	5.9
SA11	7.5 - 8.25	10	5.6
SA12	8.25 - 9	10	7.1
SA13	9 - 9.75	10	6
SA14	9.75 - 10.5	5	4.2
SA15 10.5 - 11.25		10	8.1

Table 1: Soil Vapour Measurements

Notes:

All results expressed as ppm

¹ – Combustible soil vapour measured with GasTechtor 1238ME (GasTech) calibrated to hexane and set to methane elimination.

 $^{2}\,\text{-}\,\text{Volatile}$ soil vapour measured with MiniRae 2000 Photoionization Detector (PID)

Location PL-TP1-SA3	Sample Depth	Dete	CSV ¹	VSV ²	Denmen -	Taluan	Ethyl-	Xylenes	F1	F2	F3	F4
	(m)	Date	(ppm)	(ppm)	Benzene	Toluene	benzene	(o, m & p)	(C ₆ -C ₁₀)	(>C ₁₀ -C ₁₆)	(>C ₁₆ -C ₃₄)	(>C ₃₄)
PL-TP1-SA3	1.2-2.0	20-Jun-06	5	7.8	<0.04	<0.1	<0.1	<0.1	<10	13	<10	21
PL-TP2-SA2	0.6-1.2	20-Jun-06	15	8.3	< 0.04	<0.1	<0.1	<0.1	<10	<10	<10	17
PL-TP3-SA1	0.0-0.6	20-Jun-06	5	8.9	<0.04	<0.1	<0.1	<0.1	<10	<10	14	20
PL-TP2-SA2 (Field Duplicate)	0.6-1.2	20-Jun-06	15	8.3	<0.04	<0.1	<0.1	<0.1	<10	<10	<10	16
PL-MW1-SA6	3.75-4.5	20-Jun-06	10	5.2	< 0.04	<0.1	<0.1	<0.1	<10	<10	18	28
PL-MW2-SA2	0.75-1.5	20-Jun-06	10	9.2	< 0.04	<0.1	<0.1	<0.1	<10	<10	<10	16
PL-MW3-SA1	0.0-0.75	20-Jun-06	5	6.4	< 0.04	<0.1	<0.1	<0.1	<10	<10	37	25
	0.0 0.10	20-301-00	Ŭ	0.1	Guide	-	30.1	\$0.1			01	20
			Soil Ingestion		11	22000	10000	150000	-	-	-	-
			Dermal Contact		25	220000	58000	>100000	-	-	_	-
CCME (2004) Soil Q	uality Guidelines ³		Soil Inhalation		-	-	-	-	-	-	-	-
Residential/		Vanour	Inhalation (base	ement) ⁶	0.015	200	88	22	-	-	-	-
Coarse-Gr			halation (slab-o		0.0095	120	55	14	-	-	-	-
Surface soil			Protection of Potable Groundwater ⁶		0.030	0.37	0.082	11	-	-	-	-
	(11011)		Protection of GW for Aquatic Life		1.0	0.10	50	37	-	-	-	-
		Eco Soil Contact			31	75	55	95	-	-	-	-
		Soil Ingestion			-	-	-	-	15000	8000	18000	25000
CCME (2001) Canada	wide Standards	Dermal Contact		-	-	-	-	RES	RES	RES	RES	
for Residential		Vapour Inhalation (basement) ⁶						50	150	NA	NA	
		Vapour Inhalation (slab-on-grade) 6		-	-	-	-	30	150	NA	NA	
Coarse-gr		Protection of Potable Groundwater ⁶			-	-	-	-	860	1200	NA	NA
Surface soil	(<1.5 m)	Protection of GW for Aquatic Life			-	-	-	-	230	150	NA	NA
			Eco Soil Contact		-	-	-	-	130	450	400	2,800
			Soil Ingestion		-	-	-	-	-	-	-	-
			Dermal Contact		-	-	-	-	-	-	-	-
CCME (2004) Soil Q			Soil Inhalation		-	-	-	-	-	-	-	-
Residential/	Parkland		Inhalation (base		0.21	2600	1300	320	-	-	-	-
Fine -Gra	ined ⁵		halation (slab-o		0.22	2800	1400	340	-	-	-	-
Subsoil (>	1.5 m)	Protection	of Potable Grou	undwater 6	0.0068	0.08	0.018	2.4	-	-	-	-
		Protectio	on of GW for Aqu	uatic Life	-	-	-	-	-	-	-	-
			Eco Soil Contac	t	120	220	240	130	-	-	-	-
			Soil Ingestion		-	-	-	-	RES	RES	RES	RES
CCME (2001) Canada			Dermal Contact		-	-	-	-	RES	RES	RES	RES
for Residential			halation (slab-o		-	-	-	-	940	5200	NA	NA
Fine -Gra	ained ⁵		of Potable Grou		-	-	-	-	180	250	NA	NA
Subsoil (>	1.5 m)		on of GW for Aqu		-	-	-	-	TBD	TBD	NA	NA
			Eco Soil Contac	t	-	-	-	-	750	2200	3500	10,000

Table 2: Soil Analytical Results - Petroleum Hydrocarbons Constituents

Notes:

All results expressed in mg/kg or µg/g (ppm)

ND - below laboratory method detection limit nm - not monitored

- applicable guidelines

- ' = no guideline established

1 - Combustible soil vapour measured with GasTechtor 1238ME (GasTech) calibrated to hexane and set to methane elimination.

² – Volatile soil vapour measured with MiniRae 2000 Photoionization Detector (PID)

³ – Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines Soil Quality Guidelines (1991, last updated 2004)

⁴ – CCME, 2001. Canada-Wide Standards for Petroleum Hydrocarbons (PHC) for Soil in Coarse-Grained Soil for Residentidal Land Use

⁵ – Surface soil: Coarse-grained soil defined as having a median grain size (D50) >=75 microns; Subsurface soil: Fine-grained soil defined as having a median grain size (D50) <75 microns;

⁶ – Pathway not considered applicable BOLD and Shaded = exceeds the applicable guidelines

Table 3: Soil Analyt		COME 2004					
Devementer	PL-TP1-SA3	PL-TP2-SA2	PL-TP3-SA1	PL-MW1-SA6	PL-MW2-SA2	PL-MW3-SA1	CCME 2004
Parameter	1.2-2.0	0.6-1.2	0.0-0.6	3.75-4.5	0.75-1.5	0.0-0.75	SQG ²
	19-Jun-06	19-Jun-06	19-Jun-06	19-Jun-06	19-Jun-06	19-Jun-06	Residential/ Parkland
Soil Vapours ¹ (ppm)	7.8	8.3	8.9	5.2	9.2	6.4	Parkianu
1,1,1,2-tetrachloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
1,1,1-trichloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,1,2,2-tetrachloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,1,2-trichloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,1-dichloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,1-dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,2,3-trichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2
1,2,4-trichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	2
1,2-dibromoethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
1,2-dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
1,2-dichloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,2-dichloropropane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
1,3-dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
1,4-dichlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
Bromodichloromethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Bromoform	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Bromomethane	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
Carbon tetrachloride	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
Chlorobenzene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1
Chlorodibromomethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Chloroethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Chloroform	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
Chloromethane	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	-
cis-1,2-dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
cis-1,3-dichloropropene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Dichloromethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
Styrene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
Tetrachloroethene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	0.2
trans-1,2-dichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	5
trans-1,3-dichloropropene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Trichloroethene	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	3
Trichlorofluoromethane	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-
Vinyl chloride	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	-

Table 3: Soil Analytical Results – Volatile Organic Compounds (VOCs)

Notes:

All results expressed in mg/kg (ppm)

nc = no guideline established

< - less than laboratory method detection limit

¹ – Volatile soil vapour measured with MiniRae 2000 Photoionization Detector (PID)

² – Canadian Council of Ministers of the Environment (CCME) Canadian Environmental Quality Guidelines Soil Quality Guidelines (1991, Last updated 2004) · parkland land use guidelines

	Site/Sam	Site/Sample Number/Depth (mbg)/Date						
Deveneeter	PL-TP2-SA2	PL-MW1-SA6	PL-MW3-SA1	CCME 2004 SQG ¹				
Parameter	0.6-1.2	3.75-4.5	0-0.75	Residential/ Parkland				
	20-Jun-06	20-Jun-06	20-Jun-06					
Aluminum	848	9030	3510	-				
Antimony	<2	<2	<2	20				
Arsenic	<1	8	2	12				
Barium	9.4	216	48.9	500				
Beryllium	<0.1	0.5	0.2	4				
Bismuth	<10	<10	<10	-				
Boron	<0.1	0.2	0.1	-				
Cadmium	<0.2	0.9	<0.2	10				
Calcium	29000	23300	22800	-				
Chromium	2	18	6	64				
Cobalt	0.9	10.2	2.5	50				
Copper	<2	25	<2	63				
Iron	1770	23100	9940	-				
Lead	<10	12	<10	140				
Lithium	1.6	11.7	3.4	-				
Magnesium	3820	9580	5890	-				
Manganese	56.9	339	143	-				
Molybdenum	<0.5	1.3	<0.5	10				
Nickel	<4	30	6	50				
Phosphorus	73	798	206	-				
Potassium	168	1140	429	-				
Selenium	<0.5	<0.5	<0.5	1				
Silver	<1	<1	<1	20				
Sodium	22	106	24	-				
Strontium	14.7	48.4	16.4	-				
Sulphur	71	135	81	-				
Thallium	<1	<1	<1	1				
Tin	<2	<2	<2	50				
Titanium	41.6	150	88.2	-				
Uranium	<0.2	1.3	0.2	-				
Vanadium	3	35	12	130				
Zinc	3.0	83	14	200				
Zirconium	<1	3	<1	-				

Table 4: Soil Analytical Results - Metals

Notes:

All units expressed in mg/kg dry weight unless otherwise noted.

nc - no guideline established

< - below laboratory method detection limit

¹ – Canadian Council of Ministers of the Environment "Canadian Environmental Quality Guidelines - Soil Quality Guidelines" (1991, last updated 2004)

nd = not detected

Table 5: Soil Analytical Results - Glycols

	Site/Sample Numb	er/Depth (mbg)/Date		
Parameter	PL-TP2-SA2	PL-MW2-SA2	CCME 2004 SQG ¹ Residential/	
Parameter	0.6-1.2	0.75-1.5	Parkland	
	20-Jun-06	20-Jun-06	1	
Ethylene Glycol	<2.1	<2.1	960	
Diethylene Glycol	<3.2	<3.2	-	
Triethylene Glycol	<6.4	<6.4	-	
Tetraethylene Glycol	<11	<11	-	
Propylene Glycol	<11	<11	-	

Notes:

All units expressed in mg/kg dry weight unless otherwise noted.

nc - no guideline established

< - below laboratory method detection limit

¹ – Canadian Council of Ministers of the Environment "Canadian Environmental Quality Guidelines - Soil Quality Guidelines" (1991, last updated 2004)

nd = not detected

Table 6: Groundwater Monitoring Results

Monitoring Well	Date	Well Elevation ¹ (m)	VHV ² (ppm)	CHV ³ (ppm)	Depth to Groundwater (mbtop)	Apparent Thickness of PSL ⁴ (m)	Groundwater Elevation (m)			
	Pine Lake - Wood Buffalo National Park									
PL-MW1	PL-MW1 12-Jul-06 100.75 0.5 100 dry									
PL-MW2	12-Jul-06	100.58	1.8	100	dry					
PL-MW3	12-Jul-06	100.68	2.7	100	dry					

Notes:

mbtop - metres below top of pipe

nd - not detected

 $^{\rm 1}-$ Well elevation measured with respect to an assumed benchmark.

² – Volatile headspace vapour measured with MiniRae 2000 Photoionization Detector (PID)

 $^{\rm 3}-$ Combustible headspace vapour measured with Gastechtor 1238 ME

⁴ – PSL = Phase-separated liquid

Location	Benzene	Toluene	Ethyl- benzene	Xylenes (o, m & p)	F1	F2	F3	F4
					(C ₆ -C ₁₀)	(>C ₁₀ -C ₁₆)	(>C ₁₆ -C ₃₄)	(>C ₃₄)
PL-TP2-SA2	<0.04	<0.1	<0.1	<0.1	<10	<10	<10	17
PL-TP2-SA2 (Field Duplicate)	<0.04	<0.1	<0.1	<0.1	<10	<10	<10	16
RPD (%)	0	0	0	0	0	0	0	6

 Table 7: QA/QC Samples - Soil Analytical Results - Petroleum Hydrocarbons Constituents

Location	Benzene	Toluene	Ethyl-benzene	Xylenes	F1 (C ₆ -C ₁₀)	F2 (>C ₁₀ -C ₁₆)
HC-MW13	0.0005	<0.0005	0.0011	<0.001	<0.1	0.2
HC-MW13 (Field Duplicate)	<0.0005	<0.0005	0.0009	<0.001	<0.1	0.3
RPD (%)	0	0	20	0	0	40

 Table 8 – QA/QC Samples - Groundwater Analytical Results - Petroleum Hydrocarbons Constituents

	Site/Samp	le Number/Date	
Parameters	HC-MW13	HC-MW13 (Field Duplicate)	RPD (%)
	13-Jul-06	13-Jul-06	
Naphthalene	1	2	67
Quinoline	<0.1	<0.1	0
Acenaphthylene	<0.1	<0.1	0
Acenaphthene	<0.1	<0.1	0
Fluorene	<0.1	<0.1	0
Phenanthrene	<0.3	<0.3	0
Anthracene	<0.1	<0.1	0
Acridine	<0.1	<0.1	0
Fluoranthene	<0.1	<0.1	0
Pyrene	<0.1	<0.1	0
Benzo(a)anthracene	<0.1	<0.1	0
Chrysene	<0.1	<0.1	0
Benzo(b&j)fluoranthene	<0.1	<0.1	0
Benzo(k)fluoranthene	<0.1	<0.1	0
Benzo(a)pyrene	<0.01	<0.01	0
Indeno(1,2,3-cd)pyrene	<0.1	<0.1	0
Dibenz(a,h)anthracene	<0.1	<0.1	0
Benzo(g,h,i)perylene	<0.1	<0.1	0

 Table 9 – QA/QC Samples - Groundwater Analytical Results - Polycyclic Aromatic Hydrocarbons

Ma;

Your Project #: 1013548 WOOD BUFFALO Coding # NSD016400 Your C.O.C. #: 133575

Attention: STEVE MOSSMAN JACQUES WHITFORD LTD. 500,708-11AVE S.W CALGARY, AB CANADA T2R 0E4

Report Date: 2006/07/20

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A630861

Received: 2006/07/14, 15:50

Sample Matrix: Water # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX in Water by HS GC/MS	3	2006/07/18	2006/07/18	EENVSOP-00004 V.2	EPA SW 846 8260 B
F1-BTEX Water Calc	6	2006/07/15	2006/07/15		
CCME Hydrocarbons (F1; HSGC/MS)	1	2006/07/17	2006/07/18	EENVSOP-00002 V.5	
CCME Hydrocarbons (F1; HSGC/MS)	5	2006/07/18	2006/07/18	EENVSOP-00002 V.5	
CCME Hydrocarbons in Water (F2; C10-C16)	6	2006/07/19	2006/07/19	OR-414 v1.0	EPA 8015D SW846
Mercury (Dissolved)	3	2006/07/19	2006/07/19	EENVSOP-00031 V.1	EPA 245.1
Elements by ICP-AES (dissolved)	3	2006/07/18	2006/07/18	EENVSOP-00034 V.I	EPA SW846 6010B
ICPMS - Fresh Aquatic Life - Dissolved	3	N/A	2006/07/17	EENVSOP-00123 V.1	EPA SW 846 6020 A
PAH in Water by GC/MS (Extended)	3	2006/07/17	2006/07/19	OR-405 v2.1	EPA 3510C/8270D
VOCs in Water by P&T GC/MS (Std List)	3	N/A	2006/07/19	EENVSOP-00003 V.3	EPA SW846 8260B

Encryption Key A. Fland and 20 Jul 2006 06:54:14 -06:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

SISAVATH PHONHARATH, Project Manager Email: sisavath.phonharath@maxxamanalytics.com Phone# (780) 465-1212

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1 Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5Aggelepppe(780) 465-1212 FAX(780) 450-4187

ų

.

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

•

CCME METALS (WATER)

Maxxam ID Sampling Date		C00843 2006/07/13	C00844 2006/07/13	C00845 2006/07/13		
COC Number		133575	133575	133575		
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batc
Elements						
Dissolved Silver (Ag)	ug/L	0.2	<0.1	<0.1	0.1	1199078
Dissolved Aluminum (Al)	ug/L	<5	135	563	5	1199078
Dissolved Arsenic (As)	ug/L	<5	<5	<5	5	1199078
Dissolved Cadmium (Cd)	ug/L	0.07	0.07	0.14	0.01	1199078
Dissolved Copper (Cu)	ug/L	<2	<2	5	2	1199078
Dissolved Lead (Pb)	ug/L	<1	<1	3	1	1199078
Dissolved Antimony (Sb)	ug/L	<1	<1	<1	1	1199078
Dissolved Selenium (Se)	ug/L	8	<1	9	1	1199078
Dissolved Thallium (TI)	ug/L	<0.8	<0.8	<0.8	0.8	1199078
Dissolved Uranium (U)	ug/L	67	2	4	1	1199078
Dissolved Metals by ICP						
Dissolved Barium (Ba)	mg/L	0.497	0.144	0.185	0.003	1200671
Dissolved Beryllium (Be)	mg/L	<0.001	<0.001	<0.001	0.001	1200671
Dissolved Bismuth (Bi)	mg/L	<0.2	<0.2	<0.2	0.2	1200671
Dissolved Boron (B)	mg/L	0.05	<0.05	0.13	0.05	1200671
Dissolved Calcium (Ca)	mg/L	267	259	125	0.05	1200671
Dissolved Chromium (Cr)	mg/L	<0.007	<0.007	<0.007	0.007	1200671
Dissolved Cobalt (Co)	mg/L	0.007	0.007	<0.005	0.005	1200671
Dissolved Iron (Fe)	mg/L	2.10	2.39	3.10	0.006	1200671
Dissolved Lithium (Li)	mg/L	0.05	<0.02	<0.02	0.02	1200671
Dissolved Magnesium (Mg)	mg/L	1 41	30.6	24.9	0.05	1200671
Dissolved Manganese (Mn)	mg/L	1.64	1.77	0.340	0.001	1200671
Dissolved Molybdenum (Mo)	mg/L	<0.006	<0.006	<0.006	0.006	1200671
Dissolved Nickel (Ni)	mg/L	0.017	0.008	0.009	0.008	1200671
Dissolved Phosphorus (P)	mg/L	<0.1	<0.1	0.2	0.1	1200671
Dissolved Potassium (K)	mg/L	4.1	6.8	2.0	0.2	1200671
Dissolved Silicon (Si)	mg/L	7.00	6.04	5.67	0.05	1200671
issolved Sodium (Na)	mg/L	252	30.9	26.7	0.05	1200671
issolved Strontium (Sr)	mg/L	1.44	0.47	0.24	0.01	1200671
issolved Sulphur (S)	mg/L	19.6	77.7	14.6	0.2	1200671
lissolved Tin (Sn)	mg/L	<0.04	<0.04	<0.04	0.04	1200671
issolved Titanium (Ti)	mg/L	<0.006	<0.006	0.013	0.006	1200671
issolved Vanadium (V)	mg/L	<0.05	<0.05	<0.05	0.05	1200671

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

CCME METALS (WATER)

Maxxam ID		C00843	C00844	C00845		
Sampling Date		2006/07/13	2006/07/13	2006/07/13		
COC Number		133575	133575	133575		
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batch
		-				
Dissolved Zinc (Zn)	mg/L	<0.005	<0.005	0.012	0.005	1200671
Dissolved Zirconium (Zr)	mg/L	<0.005	<0.005	<0.005	0.005	1200671
Mercury by CVAA						
Dissolved Mercury (Hg)	ug/L	<0.05	<0.05	< 0.05	0.05	1202679

•

1

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

CCME PHC WATER PACKAGE (WATER)

	C00846	C00847	C00848		
	2006/07/13	2006/07/13	2006/07/13		
		-			
Units	HC-MW16	HC-MW13	HC-DUP	RDL	QC Batch
			1		
ug/L	<100	<100	<100	100	1198957
ug/L	<100	<100	<100	100	1200486
mg/L	<0.1	0.2	0.3	0.1	1202290
ug/L	<0.5	0.5	<0.5	0.5	1201031
ug/L	<0.5	<0.5	<0.5	0.5	1201031
ug/L	<0.5	1 .1	0.9	0.5	1201031
ug/L	<0.5	<0.5	<0.5	0.5	1201031
ug/L	<1	<1	<1	1	1201031
ug/L	<1	<1	<1	1	1201031
%	73	90	91	N/A	1200486
%	92	93	93	N/A	1202290
%	104	105	105	N/A	1201031
%	123	126	125	N/A	1201031
%	98	97	97	N/A	1201031
	ug/L mg/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L % %	2006/07/13 133575 Units HC-MW16 ug/L <100	2006/07/13 2006/07/13 133575 133575 Jinits HC-MW16 HC-MW13 ug/L <100	2006/07/13 2006/07/13 2006/07/13 133575 133575 133575 Jnits HC-MW16 HC-MW13 HC-DUP ug/L <100	2006/07/13 2006/07/13 2006/07/13 133575 133575 133575 Jinits HC-MW16 HC-MW13 HC-DUP ug/L <100

•

•

-

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

PAHS WATER CCME DRINKING WATER (WATER)

Maxxam ID		C00846	C00847	C00848		
Sampling Date		2006/07/13	2006/07/13	2006/07/13		
COC Number		133575	133575	133575		
	Units	HC-MW16	HC-MW13	HC-DUP	RDL	QC Batch
Polycyclic Aromatics			· · · · · · · · · · · · · · · · · · ·			
Naphthalene	ug/L	<1	1	2	1	1200095
Quinoline	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Acenaphthylene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Acenaphthene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Fluorene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Phenanthrene	ug/L	<0.3	<0.3	<0.3	0.3	1200095
Anthracene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Acridine	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Fluoranthene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Pyrene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Benzo(a)anthracene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Chrysene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Benzo(b&j)fluoranthene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Benzo(k)fluoranthene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Benzo(a)pyrene	ug/L	<0.01	<0.01	<0.01	0.01	1200095
Indeno(1,2,3-cd)pyrene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Dibenz(a,h)anthracene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Benzo(g,h,i)perylene	ug/L	<0.1	<0.1	<0.1	0.1	1200095
Surrogate Recovery (%)					1	
D10-ANTHRACENE (sur.)	%	54	30	74	N/A	1200095
D12-BENZO(A)PYRENE (sur.)	%	42	30	62	N/A	1200095
D8-ACENAPHTHYLENE (sur.)	%	30	24 (1)	42	N/A	1200095
FERPHENYL-D14 (sur.)	%	29 (1)	23 (1)	42	N/A	1200095

N/A = Not Applicable RDL = Reportable Detection Limit (1) Please note that the recovery of some compounds are outside control limits however the overall quality control for this analysis meets our acceptability criteria.

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

RESULTS OF CHEMICAL ANALYSES OF WATER

Maxxam ID		C00843	C00844	C00845		
Sampling Date		2006/07/13	2006/07/13	2006/07/13		
COC Number		133575	133575	133575		
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batch
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batch
Hydrocarbons	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batch

RDL = Reportable Detection Limit

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		C00843		C00844	C00845		1
Sampling Date		2006/07/13		2006/07/13	2006/07/13		
COC Number		133575		133575	133575		
	Units	PC-MW4	QC Batch	PC-MW1	PC-MW3	RDL	QC Batch
Hydrocarbons			1				
F1 (C06-C10)	ug/L	<100	1199662	<100	<100	100	1200486
F2 (C10-C16 Hydrocarbons)	mg/L	<0.1	1202290	<0.1	<0,1	0.1	1202290
Surrogate Recovery (%)							
4-BROMOFLUOROBENZENE (sur.)	%	89	1199662	89	76	N/A	1200486
O-TERPHENYL (sur.)	%	98	1202290	98	93	N/A	1202290

e-

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID Sampling Date		C00843 2006/07/13	C00844 2006/07/13	C00845 2006/07/13		
COC Number		133575	133575	133575	-	
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batcl
Volatiles						
Benzene	ug/L	<0.5	14.8	<0.5	0.5	1202311
Bromodichloromethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Bromoform	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Bromomethane	ug/L	<2	<2	<2	2	1202311
Carbon tetrachloride	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Chlorobenzene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Chlorodibromomethane	ug/L	<1	<1	<1	1	1202311
Chloroethane	ug/L	<1	<1	<1	1	1202311
Chloroform	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Chloromethane	ug/L	<2	<2	<2	2	1202311
1,2-dibromoethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,2-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,3-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,4-dichlorobenzene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,1-dichloroethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,2-dichloroethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
1,1-dichloroethene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
cis-1,2-dichloroethene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
rans-1,2-dichloroethene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Dichloromethane	ug/L	<2	<2	<2	2	1202311
I,2-dichloropropane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
cis-1,3-dichloropropene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
rans-1,3-dichloropropene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Ethylbenzene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Styrene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
,1,1,2-tetrachloroethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
,1,2,2-tetrachloroethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
etrachloroethene	ug/L	<0.5	<0.5	0.9	0.5	1202311
oluene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
,1,1-trichloroethane	ug/L	<0.5	<0.5	9.2	0.5	1202311
,1,2-trichloroethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311
richloroethene	ug/L	<0.5	<0.5	4.5	0.5	1202311
richlorofluoromethane	ug/L	<0.5	<0.5	<0.5	0.5	1202311

•

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		C00843	C00844	C00845		
Sampling Date		2006/07/13	2006/07/13	2006/07/13		
COC Number		133575	133575	133575		
	Units	PC-MW4	PC-MW1	PC-MW3	RDL	QC Batch
Vinyl chloride	ug/L	<2	<2	<2	2	1202311
-			-	~2	2	1202311
Xylenes (Total)	ug/L	<1	<1	<1	1	1202311
m & p-Xylene	ug/L	<1	<1	<1	1	1202311
o-Xylene	ug/L	<0.5	<0.5	<0.5	0.5	1202311
Total Trihalomethanes	ug/L	<0.5	<0.5	13.6	0.5	1202311
Surrogate Recovery (%)						
4-BROMOFLUOROBENZENE (sur.)	%	111	113	118	N/A	1202311
D4-1,2-DICHLOROETHANE (sur.)	%	103	104	103	N/A	1202311
D8-TOLUENE (sur.)	%	103	77	93	N/A	1202311

JACQUES WHITFORD LTD. Client Project #: 1013548 WOOD BUFFALO Site Reference: Sampler Initials: JPH

PAHS WATER CCME DRINKING WATER (WATER) Comments

MATRIX SPIKE PAH in Water by GC/MS (Extended): D8-ACENAPHTHYLENE AND TERPHENYL-D14 SURROGATES OUTSIDE ACCEPTANCE CRITERIA DUE TO MATRIX INTERFERENCE

Sample C00846-01 PAH in Water by GC/MS (Extended): TERPHENYL-D14 SURROGATE OUTSIDE ACCEPTANCE CRITERIA DUE TO MATRIX INTERFERENCE

Sample C00847-01 PAH in Water by GC/MS (Extended): D8-ACENAPHTHYLENE AND TERPHENYL-D14 SURROGATES OUTSIDE ACCEPTANCE CRITERIA DUE TO MATRIX INTERFERENCE

Results relate only to the items tested.

Maxam

•

.

•

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report

Maxxam Job Number: EA630861

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
1199078 MS2	Calibration Check	Dissolved Silver (Ag)	2006/07/17	Value	98	%	85 - 11
		Dissolved Aluminum (Al)	2006/07/17		96	%	85 - 11
		Dissolved Arsenic (As)	2006/07/17		102	%	85 - 11
		Dissolved Cadmium (Cd)	2006/07/17		102	%	85 - 11
		Dissolved Copper (Cu)	2006/07/17		105	%	85 - 11
		Dissolved Lead (Pb)	2006/07/17		103	%	85 - 11
		Dissolved Antimony (Sb)	2006/07/17		98	%	85 - 11
		Dissolved Selenium (Se)	2006/07/17		104	%	85 - 11
		Dissolved Thallium (TI)	2006/07/17		104	%	85 - 11
		Dissolved Uranium (U)	2006/07/17		99	%	85 - 11
	MATRIX SPIKE	Dissolved Arsenic (As)	2006/07/17		103	%	80 - 12
		Dissolved Cadmium (Cd)	2006/07/17		94	%	80 - 12 80 - 12
		Dissolved Lead (Pb)	2006/07/17		94 97	%	
		Dissolved Selenium (Se)	2006/07/17				80 - 12
		Dissolved Thallium (TI)	2006/07/17		106 101	%	80 - 12
	BLANK	Dissolved Silver (Ag)	2006/07/17	<0.1	101	%	80 - 12
		Dissolved Aluminum (Al)	2006/07/17			ug/L	
		Dissolved Arsenic (As)		<5		ug/L	
		Dissolved Alsenic (As) Dissolved Cadmium (Cd)	2006/07/17	<5		ug/L	
		Dissolved Cadmidin (Cd) Dissolved Copper (Cu)	2006/07/17	<0.01		ug/L	
		Dissolved Lead (Pb)	2006/07/17	<2		ug/L	
			2006/07/17	<1		ug/L	
		Dissolved Antimony (Sb)	2006/07/17	<1		ug/L	
		Dissolved Selenium (Se)	2006/07/17	<1		ug/L	
		Dissolved Thallium (TI)	2006/07/17	<0.8		ug/L	
	RPD	Dissolved Uranium (U)	2006/07/17	<1		ug/L	
	RPD	Dissolved Silver (Ag)	2006/07/17	NC		%	2
		Dissolved Aluminum (Al)	2006/07/17	NC		%	2
		Dissolved Arsenic (As)	2006/07/17	NC		%	2
		Dissolved Cadmium (Cd)	2006/07/17	NC		%	2
		Dissolved Copper (Cu)	2006/07/17	NC		%	2
		Dissolved Lead (Pb)	2006/07/17	NC		%	2
		Dissolved Antimony (Sb)	2006/07/17	NĊ		%	2
		Dissolved Selenium (Se)	2006/07/17	NC		%	2
		Dissolved Thallium (TI)	2006/07/17	NC		%	2
		Dissolved Uranium (U)	2006/07/17	NC		%	2
199662 KO	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		81	%	70 - 13
		F1 (C06-C10)	2006/07/18		85	%	70 - 13
	SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		73	%	70 - 13
		F1 (C06-C10)	2006/07/18		106	%	80 - 12
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		109	%	70 - 13
		F1 (C06-C10)	2006/07/18	<100		ug/L	
	RPD	F1 (C06-C10)	2006/07/18	NC		%	4
200095 HG	MATRIX SPIKE						
	[C00846-01]	D10-ANTHRACENE (sur.)	2006/07/19		51	%	30 - 13
		D12-BENZO(A)PYRENE (sur.)	2006/07/19		36	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/07/19		27 (1)	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/07/19		25 (1)	%	30 - 13
		Naphthalene	2006/07/19		68 ິ	%	30 - 13
		Quinoline	2006/07/19		45	%	30 - 13
		Acenaphthylene	2006/07/19		40	%	30 - 13
		Acenaphthene	2006/07/19		45	%	30 - 13
		Fluorene	2006/07/19		41	%	30 - 13
		Phenanthrene	2006/07/19		46	%	30 - 13
		Anthracene	2006/07/19		46	%	30 - 13
		Acridine	2006/07/19		34	%	30 - 13
		Fluoranthene	2006/07/19		41	%	30 - 130
							00-10

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2getepho2e(780) 465-1212 FAX(780) 450-4187

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
200095 HG	MATRIX SPIKE					01110	do uni
	[C00846-01]	Pyrene	2006/07/19		42	%	30 - 13
		Benzo(a)anthracene	2006/07/19		41	%	30 - 13
		Chrysene	2006/07/19		45	%	30 - 13
		Benzo(b&j)fluoranthene	2006/07/19		45	%	30 - 13
		Benzo(k)fluoranthene	2006/07/19		41	%	30 - 13
		Benzo(a)pyrene	2006/07/19		44	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/07/19		45	%	30 - 13
		Dibenz(a,h)anthracene	2006/07/19		61	%	30 - 13
		Benzo(g,h,i)perylene	2006/07/19		43	%	30 - 13
	SPIKE	D10-ANTHRACENE (sur.)					
	OFINE		2006/07/19		61	%	30 - 10
		D12-BENZO(A)PYRENE (sur.)	2006/07/19		59	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/07/19		51	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/07/19		47	%	30 - 13
		Naphthalene	2006/07/19		38	%	30 - 13
		Quinoline	2006/07/19		33	%	30 - 13
		Acenaphthylene	2006/07/19		34	%	30 - 13
		Acenaphthene	2006/07/19		40	%	30 - 13
		Fluorene	2006/07/19		39	%	30 - 13
		Phenanthrene	2006/07/19		42	%	30 - 13
		Anthracene	2006/07/19		41	%	30 - 13
		Acridine	2006/07/19		36	%	30 - 13
		Fluoranthene	2006/07/19		38	%	30 - 13
		Pyrene	2006/07/19		38	%	
		Benzo(a)anthracene	2006/07/19				30 - 13
		Chrysene	2006/07/19		35	%	30 - 13
					43	%	30 - 13
		Benzo(b&j)fluoranthene	2006/07/19		40	%	30 - 13
		Benzo(k)fluoranthene	2006/07/19		39	%	30 - 13
		Benzo(a)pyrene	2006/07/19		40	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/07/19		41	%	30 - 13
-		Dibenz(a,h)anthracene	2006/07/19		56	%	30 - 13
		Benzo(g,h,i)perylene	2006/07/19		40	%	30 - 13
	BLANK	D10-ANTHRACENE (sur.)	2006/07/19		53	%	30 - 13
		D12-BENZO(A)PYRENE (sur.)	2006/07/19		51	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/07/19		45	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/07/19		40	%	30 - 13
		Naphthalene	2006/07/19	<1	40	ug/L	50 - 10
		Quinoline	2006/07/19	<0.1			
		Acenaphthylene				ug/L	
			2006/07/19	<0.1		ug/L	
		Acenaphthene	2006/07/19	<0.1		ug/L	
		Fluorene	2006/07/19	<0.1		ug/L	
		Phenanthrene	2006/07/19	<0.3		ug/L	
		Anthracene	2006/07/19	<0.1		ug/L	
		Acridine	2006/07/19	<0.1		ug/L	
		Fluoranthene	2006/07/19	<0.1		ug/L	
		Pyrene	2006/07/19	<0.1		ug/L	
		Benzo(a)anthracene	2006/07/19	<0.1		ug/L	
		Chrysene	2006/07/19	<0.1		ug/L	
		Benzo(b&j)fluoranthene	2006/07/19	<0.1		ug/L	
		Benzo(k)fluoranthene	2006/07/19	<0.1		ug/L ug/L	
		Benzo(a)pyrene	2006/07/19	<0.01			
		Indeno(1,2,3-cd)pyrene		<0.01		ug/L	
		Dibenz(a,h)anthracene	2006/07/19			ug/L	
			2006/07/19	<0.1		ug/L	
	DDD	Benzo(g,h,i)perylene	2006/07/19	<0.1		ug/L	
	RPD	Naphthalene	2006/07/19	5.4		%	4
		Quinoline	2006/07/19	31.9		%	4

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Jelphone(780) 465-1212 FAX(780) 450-4187

.

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC			Date				
Batch	00 T	D	Analyzed		_		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1200095 HG	RPD	Acenaphthylene	2006/07/19	NC		%	40
		Acenaphthene	2006/07/19	NC		%	40
		Fluorene	2006/07/19	24.2		%	40
		Phenanthrene	2006/07/19	NC		%	40
		Anthracene	2006/07/19	NC		%	40
		Acridine	2006/07/19	NC		%	40
		Fluoranthene	2006/07/19	NC		%	40
		Pyrene	2006/07/19	2.6		%	40
		Benzo(a)anthracene	2006/07/19	NC		%	40
		Chrysene	2006/07/19	NC		%	40
		Benzo(b&j)fluoranthene	2006/07/19	NC		%	40
		Benzo(k)fluoranthene	2006/07/19	NC		%	40
		Benzo(a)pyrene	2006/07/19	24.1		%	40
		Indeno(1,2,3-cd)pyrene	2006/07/19	NC		%	40
		Dibenz(a,h)anthracene	2006/07/19	NC		%	40
		Benzo(g,h,i)perylene	2006/07/19	NC		%	
1200486 KO	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)		NC	105		40
1200-00 110		F1 (C06-C10)	2006/07/18 2006/07/18		105	%	70 - 130
	SPIKE	4-BROMOFLUOROBENZENE (sur.)			88	%	70 - 130
			2006/07/18		114	%	70 - 130
		F1 (C06-C10)	2006/07/18		100	%	80 - 120
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		109	%	70 - 130
		F1 (C06-C10)	2006/07/18	<100		ug/L	
1000074 1100	RPD	F1 (C06-C10)	2006/07/18	NC		%	40
1200671 MC3	Calibration Check	Dissolved Barium (Ba)	2006/07/18		100	%	90 - 110
		Dissolved Beryllium (Be)	2006/07/18		106	%	90 - 1 1 0
		Dissolved Bismuth (Bi)	2006/07/18		102	%	90 - 110
		Dissolved Boron (B)	2006/07/18		104	%	90 - 110
		Dissolved Calcium (Ca)	2006/07/18		97	%	90 - 110
		Dissolved Chromium (Cr)	2006/07/18		101	%	90 - 110
		Dissolved Cobalt (Co)	2006/07/18		99	%	90 - 110
		Dissolved Iron (Fe)	2006/07/18		96	%	90 - 110
		Dissolved Lithium (Li)	2006/07/18		97	%	90 - 110
		Dissolved Magnesium (Mg)	2006/07/18		101	%	90 - 110
		Dissolved Manganese (Mn)	2006/07/18		100	%	90 - 110
		Dissolved Molybdenum (Mo)	2006/07/18		100	%	
		Dissolved Nickel (Ni)	2006/07/18			%	90 - 110
		Dissolved Phosphorus (P)			101		90 - 110
		Dissolved Potassium (K)	2006/07/18		98	%	90 - 110
			2006/07/18		100	%	90 - 110
		Dissolved Silicon (Si)	2006/07/18		110	%	90 - 1 10
		Dissolved Sodium (Na)	2006/07/18		104	%	90 - 110
		Dissolved Strontium (Sr)	2006/07/18		102	%	90 - 110
		Dissolved Tin (Sn)	2006/07/18		99	%	90 - 110
		Dissolved Titanium (Ti)	2006/07/18		98	%	90 - 110
		Dissolved Vanadium (V)	2006/07/18		101	%	90 - 110
		Dissolved Zinc (Zn)	2006/07/18		100	%	90 - 110
		Dissolved Zirconium (Zr)	2006/07/18		98	%	90 - 110
	MATRIX SPIKE	Dissolved Barium (Ba)	2006/07/18		100	%	80 - 120
		Dissolved Beryllium (Be)	2006/07/18		107	%	80 - 120
		Dissolved Boron (B)	2006/07/18		105	%	80 - 120
		Dissolved Chromium (Cr)	2006/07/18		83	%	80 - 120
		Dissolved Cobalt (Co)	2006/07/18		94	%	80 - 120
		Dissolved Lithium (Li)	2006/07/18		93	%	80 - 120
		Dissolved Manganese (Mn)	2006/07/18				
		Dissolved Molybdenum (Mo)	2006/07/18		103	%	80 - 120
		Dissolved Nickel (Ni)			92	%	80 - 120
		Dissolved Silicon (Si)	2006/07/18		101	%	80 - 120
			2006/07/18		100	%	80 - 120

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 delta bo2e(780) 465-1212 FAX(780) 450-4187

Maxam

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	001
200671 MC3	MATRIX SPIKE	Dissolved Strontium (Sr)	2006/07/18	Value	102	<u> </u>	QC Limits 80 - 120
		Dissolved Tin (Sn)	2006/07/18		93	%	80 - 120
		Dissolved Titanium (Ti)	2006/07/18		99	%	80 - 120
		Dissolved Vanadium (V)	2006/07/18		93 94	%	80 - 120
		Dissolved Zinc (Zn)	2006/07/18		95	%	80 - 120
	BLANK	Dissolved Barium (Ba)	2006/07/18	< 0.003	30		00 - 120
		Dissolved Beryllium (Be)	2006/07/18	<0.001		mg/L	
		Dissolved Bismuth (Bi)	2006/07/18	<0.0		mg/L mg/L	
		Dissolved Boron (B)	2006/07/18	<0.05		mg/L	
		Dissolved Calcium (Ca)	2006/07/18	<0.05		mg/L	
		Dissolved Chromium (Cr)	2006/07/18	<0.007		mg/L	
		Dissolved Cobalt (Co)	2006/07/18	<0.005		mg/L	
		Dissolved Iron (Fe)	2006/07/18	<0.006		-	
		Dissolved Lithium (Li)	2006/07/18	< 0.02		.mg/L mg/L	
		Dissolved Magnesium (Mg)	2006/07/18	<0.02			
		Dissolved Manganese (Mn)	2006/07/18	< 0.001		mg/L mg/l	
		Dissolved Molybdenum (Mo)	2006/07/18	<0.001		mg/L	
		Dissolved Nickel (Ni)	2006/07/18	<0.000		mg/L	
		Dissolved Phosphorus (P)	2006/07/18	<0.000		mg/L	
		Dissolved Potassium (K)	2006/07/18	<0.1		mg/L	
		Dissolved Silicon (Si)	2006/07/18	<0.2		mg/L	
		Dissolved Sodium (Na)	2006/07/18	<0.05 <0.05		mg/L	
		Dissolved Strontium (Sr)	2006/07/18	<0.05		mg/L	
		Dissolved Sulphur (S)	2006/07/18	<0.01		mg/L	
		Dissolved Tin (Sn)	2006/07/18	<0.2		mg/L	
		Dissolved Titanium (Ti)	2006/07/18			mg/L	
		Dissolved Vanadium (V)	2006/07/18	<0.006 <0.05		mg/L	
		Dissolved Zinc (Zn)	2006/07/18			mg/L	
		Dissolved Zirconium (Zr)		<0.005		mg/L	
	RPD	Dissolved Encontain (En)	2006/07/18	<0.005		mg/L	-
		Dissolved Bardin (Ba)	2006/07/18	2.1		%	2
		Dissolved Bismuth (Bi)	2006/07/18 2006/07/18	NC		%	2
		Dissolved Boron (B)		NC 1.0		%	2
		Dissolved Calcium (Ca)	2006/07/18	1.6		%	25
		Dissolved Calcium (Ca)	2006/07/18	3.7		%	2
		Dissolved Colonation (Cr)	2006/07/18	NC		%	2
		Dissolved Iron (Fe)	2006/07/18	2.0		%	2
		Dissolved Lithium (Li)	2006/07/18	2.3		%	25
		Dissolved Magnesium (Mg)	2006/07/18	NC		%	25
		Dissolved Magnesium (Mg) Dissolved Manganese (Mn)	2006/07/18	4.4		%	25
		Dissolved Manganese (Mir) Dissolved Molybdenum (Mo)	2006/07/18	2.5		%	25
		Dissolved Nickel (Ni)	2006/07/18	NC		%	25
		Dissolved Phosphorus (P)	2006/07/18	2.7		%	25
		Dissolved Potassium (K)	2006/07/18	11.9		%	25
		· · ·	2006/07/18	2.4		%	25
		Dissolved Silicon (Si) Dissolved Sodium (Na)	2006/07/18	1.9		%	25
		Dissolved Socium (Na) Dissolved Strontium (Sr)	2006/07/18	1.4		%	25
		Dissolved Subhur (Sr)	2006/07/18	2.4		%	25
		Dissolved Sulphur (S) Dissolved Tin (Sn)	2006/07/18	3.7		%	25
		Dissolved Titanium (Ti)	2006/07/18	NC		%	25
			2006/07/18	NC		%	25
		Dissolved Vanadium (V)	2006/07/18	NC		%	25
		Dissolved Zinc (Zn)	2006/07/18	NC		%	25
1031 CD1		Dissolved Zirconium (Zr)	2006/07/18	0.08		%	25
	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		105	%	70 - 130
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/18		121	%	70 - 130
		D8-TOLUENE (sur.)	2006/07/18		97	%	70 - 130

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 delephone(780) 465-1212 FAX(780) 450-4187

١

.

•

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	vyyv/mm/dd	Value	Recovery	Units	QC Limit
1201031 CD1	MATRIX SPIKE	Benzene	2006/07/18	value	87	%	70 - 13
1201001 001		Toluene	2006/07/18		96	%	70 - 13
		Ethylbenzene	2006/07/18		90 87	70 %	
		o-Xylene	2006/07/18		87 98		70 - 13
		m & p-Xylene				%	70 - 13
	SPIKE		2006/07/18		81	%	70 - 13
	SFILE	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		104	%	70 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/18		119	%	70 - 13
		D8-TOLUENE (sur.)	2006/07/18		100	%	70 - 13
		Benzene	2006/07/18		94	%	70 - 13
		Toluene	2006/07/18		98	%	70 - 13
		Ethylbenzene	2006/07/18		94	%	70 - 13
		o-Xylene	2006/07/18		97	%	70 - 13
		m & p-Xylene	2006/07/18		100	%	70 - 13
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/07/18		103	%	70 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/18		116	%	70 - 13
		D8-TOLUENE (sur.)	2006/07/18		100	%	70 - 13
		Benzene	2006/07/18	<0.5		ug/L	
		Toluene	2006/07/18	<0.5		ug/L	
		Ethylbenzene	2006/07/18	<0.5		ug/L	
		o-Xylene	2006/07/18	<0.5		ug/L	
		m & p-Xylene	2006/07/18	<1		ug/L	
		Xylenes (Total)	2006/07/18	<1		ug/L	
	RPD	Benzene	2006/07/18	0.2		%	4
		Toluene	2006/07/18	NC		%	4
		Ethylbenzene	2006/07/18	NC		%	4
		o-Xvlene	2006/07/18	2.5		%	4
		m & p-Xylene	2006/07/18	NC		%	4
		Xylenes (Total)	2006/07/18	NÇ		%	4
1202290 JM5	MATRIX SPIKE	- y	2000/01/10	no.		70	
	[C00844-01]	O-TERPHENYL (sur.)	2006/07/19		97	%	70 - 13
	[00000.001]	F2 (C10-C16 Hydrocarbons)	2006/07/19		83	%	
	SPIKE	O-TERPHENYL (sur.)	2006/07/19				70 - 13
	OTINE	F2 (C10-C16 Hydrocarbons)			96	%	70 - 13
	BLANK	O-TERPHENYL (sur.)	2006/07/19		84	%	80 - 12
	DLAINI		2006/07/19		92	%	70 - 13
	DDD (C00942-041	F2 (C10-C16 Hydrocarbons)	2006/07/19	<0.1		mg/L	
1202311 MC1	RPD [C00843-01]	F2 (C10-C16 Hydrocarbons)	2006/07/19	NC		%	4
	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/07/19		97	%	70 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/19		99	%	70 - 13
		D8-TOLUENE (sur.)	2006/07/19		97	%	70 - 13
		Benzene	2006/07/19		96	%	70 - 13
		Bromodichloromethane	2006/07/19		98	%	70 - 13
		Bromoform	2006/07/19		98	%	70 - 13
		Bromomethane	2006/07/19		90	%	70 - 13
		Carbon tetrachloride	2006/07/19		95	%	70 - 13
		Chlorobenzene	2006/07/19		98	%	70 - 130
		Chlorodibromomethane	2006/07/19		94	%	70 - 13
		Chloroethane	2006/07/19		98	%	70 - 13
		Chloroform	2006/07/19		98	%	70 - 13
		Chloromethane	2006/07/19		119	%	70 - 13
		1.2-dibromoethane	2006/07/19		93	%	70 - 130
		1,2-dichlorobenzene	2006/07/19		95 95	%	70 - 13
		1,3-dichlorobenzene	2006/07/19		95 92		
		1.4-dichlorobenzene	2006/07/19		92 95	%	70 - 130
		1,1-dichloroethane	2006/07/19			%	70 - 130
					93	%	70 - 130
		1,2-dichloroethane 1,1-dichloroethene	2006/07/19		95	%	70 - 130
		L FOICHORDEINER	2006/07/19		99	%	70 - 13

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 detpope(780) 465-1212 FAX(780) 450-4187

.

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limit
1202311 MC1	MATRIX SPIKE	cis-1,2-dichloroethene	2006/07/19	value	96	<u></u> %	70 - 13
		trans-1,2-dichloroethene	2006/07/19		92	%	70 - 13
		Dichloromethane	2006/07/19		77	%	70 - 13
		1,2-dichloropropane	2006/07/19		96	%	
		cis-1,3-dichloropropene	2006/07/19		90 91	%	70 - 13
		trans-1,3-dichloropropene	2006/07/19				70 - 13
		Ethylbenzene			91	%	70 - 13
		-	2006/07/19		86	%	70 - 13
		Styrene	2006/07/19		98	%	70 - 13
		1,1,1,2-tetrachloroethane	2006/07/19		96	%	70 - 13
		1,1,2,2-tetrachloroethane	2006/07/19		97	%	70 - 13
		Tetrachioroethene	2006/07/19		95	%	70 - 13
		Toluene	2006/07/19		94	%	70 - 13
		1,1,1-trichloroethane	2006/07/19		99	%	70 - 13
		1,1,2-trichloroethane	2006/07/19		103	%	70 - 13
		Trichloroethene	2006/07/19		102	%	70 - 13
		Trichlorofluoromethane	2006/07/19		103	%	70 - 13
		Vinyl chloride	2006/07/19		108	%	70 - 13
		m & p-Xylene	2006/07/19		96	%	70 - 13
		o-Xylene	2006/07/19		99	%	70 - 13
	SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/07/19		101	%	70 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/19		99	%	70 - 13
		D8-TOLUENE (sur.)	2006/07/19		98	%	70 - 13
		Benzene	2006/07/19		89	%	70 - 13
		Bromodichloromethane	2006/07/19		90	%	70 - 13
		Bromoform	2006/07/19		88	%	70 - 13
		Bromomethane	2006/07/19		86	%	70 - 13
		Carbon tetrachloride	2006/07/19		89	%	70 - 13
		Chlorobenzene	2006/07/19		90	%	70 - 13
		Chlorodibromomethane	2006/07/19		87	%	70 - 13
		Chloroethane	2006/07/19		91	%	70 - 13
		Chloroform	2006/07/19		92	%	70 - 130
		Chloromethane	2006/07/19		121	%	70 - 130
		1,2-dibromoethane	2006/07/19		86	%	
		1,2-dichlorobenzene	2006/07/19		90	70 %	70 - 13
		1,3-dichlorobenzene	2006/07/19				70 - 130
		1,4-dichlorobenzene	2006/07/19		90	%	70 - 130
		1,1-dichloroethane			91	%	70 - 13
		1,2-dichloroethane	2006/07/19		117	%	70 - 130
			2006/07/19		92	%	70 - 130
		1,1-dichloroethene	2006/07/19		90	%	70 - 130
		cis-1,2-dichloroethene	2006/07/19		91	%	70 - 130
		trans-1,2-dichloroethene	2006/07/19		105	%	70 - 130
		Dichloromethane	2006/07/19		90	%	70 - 130
		1,2-dichloropropane	2006/07/19		87	%	70 - 130
		cis-1,3-dichloropropene	2006/07/19		85	%	70 - 130
		trans-1,3-dichloropropene	2006/07/19		86	%	70 - 130
		Ethylbenzene	2006/07/19		84	%	70 - 130
		Styrene	2006/07/19		89	%	70 - 13
		1,1,1,2-tetrachloroethane	2006/07/19		90	%	70 - 13
		1,1,2,2-tetrachloroethane	2006/07/19		86	%	70 - 13
		Tetrachloroethene	2006/07/19		94	%	70 - 13
		Toluene	2006/07/19		86	%	70 - 13
		1,1,1-trichloroethane	2006/07/19		90	%	70 - 130
		1,1,2-trichloroethane	2006/07/19		92	%	70 - 130
		Trichloroethene	2006/07/19		92	%	70 - 130
		Trichlorofluoromethane	2006/07/19		91	%	70 - 130
		Vinyl chloride	2006/07/19		98	%	70 - 130
		-			30	70	10-13

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Jelta boge(780) 465-1212 FAX(780) 450-4187

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued)

Maxxam Job Number: EA630861

QA/QC Batab			Date				
Batch Num Init		Parameter	Analyzed	V-1	Deed	11	<u></u>
1202311 MC1	QC Type SPIKE	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
	OFINE	m & p-Xylene	2006/07/19		88	%	70 - 13
	BLANK		2006/07/19		90	%	70 - 1
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/07/19		107	%	70 - 13
		D4-1,2-DICHLOROETHANE (sur.)	2006/07/19		108	%	70 - 13
		D8-TOLUENE (sur.)	2006/07/19		104	%	70 - 13
		Benzene	2006/07/19	<0.5		ug/L	
		Bromodichloromethane	2006/07/19	<0.5		ug/L	
		Bromoform	2006/07/19	<0.5		ug/L	
		Bromomethane	2006/07/19	<2		ug/L	
		Carbon tetrachloride	2006/07/19	<0.5		ug/L	
		Chlorobenzene	2006/07/19	<0.5		ug/L	
		Chlorodibromomethane	2006/07/19	<1		ug/L	
		Chloroethane	2006/07/19	<1		ug/L	
		Chloroform	2006/07/19	<0.5		ug/L	
		Chloromethane	2006/07/19	<2		ug/L	
		1,2-dibromoethane	2006/07/19	<0.5			
		1,2-dichlorobenzene	2006/07/19	<0.5 <0.5		ug/L	
		1,3-dichlorobenzene	2006/07/19	<0.5 <0.5		ug/L	
		1,4-dichlorobenzene				ug/L	
		1,1-dichloroethane	2006/07/19	<0.5		ug/L	
		•	2006/07/19	<0.5		ug/L	
		1,2-dichloroethane	2006/07/19	<0.5		ug/L	
		1,1-dichloroethene	2006/07/19	<0.5		ug/L	
		cis-1,2-dichloroethene	2006/07/19	<0.5		ug/L	
		trans-1,2-dichloroethene	2006/07/19	<0.5		ug/L	
		Dichloromethane	2006/07/19	<2		ug/L	
		1,2-dichloropropane	2006/07/19	<0.5		ug/L	
		cis-1,3-dichloropropene	2006/07/19	<0.5		ug/L	
		trans-1,3-dichloropropene	2006/07/19	<0.5		ug/L	
		Ethylbenzene	2006/07/19	<0.5		ug/L	
		Styrene	2006/07/19	<0.5		ug/L	
		1,1,1,2-tetrachloroethane	2006/07/19	<0.5		ug/L	
		1,1,2,2-tetrachloroethane	2006/07/19	<0.5		ug/L	
		Tetrachloroethene	2006/07/19	<0.5			
		Toluene	2006/07/19	<0.5		ug/L	
		1,1,1-trichloroethane	2006/07/19	<0.5		ug/L	
		1,1,2-trichloroethane				ug/L	
		Trichloroethene	2006/07/19	<0.5		ug/L	
		Trichlorofluoromethane	2006/07/19	<0.5		ug/L	
			2006/07/19	<0.5		ug/L	
		Vinyl chloride	2006/07/19	<2		ug/L	
		Xylenes (Total)	2006/07/19	<1		ug/L	
		m & p-Xylene	2006/07/19	<1		ug/L	
		o-Xylene	2006/07/19	<0.5		ug/L	
		Total Trihalomethanes	2006/07/19	<0.5		ug/L	
	RPD	Benzene	2006/07/19	NC		%	4
		1,2-dibromoethane	2006/07/19	NC		%	4
		1,2-dichloroethane	2006/07/19	NC		%	2
		Ethylbenzene	2006/07/19	NC		%	4
		Toluene	2006/07/19	NC		%	4
		Xylenes (Total)	2006/07/19	NC		%	-
		m & p-Xylene	2006/07/19	NC		%	4
		o-Xylene	2006/07/19	NC		%	
02679 YY1	Calibration Check	Dissolved Mercury (Hg)	2006/07/19	NU	100		4
	MATRIX SPIKE	Dissolved Mercury (Hg)	2006/07/19		106	%	85 - 11
	BLANK	Dissolved Mercury (Hg)		<0.0F	95	%	85 - 11
	RPD	Dissolved Mercury (Hg)	2006/07/19 2006/07/19	<0.05		ug/L	
	IN LA		2000/07/719	NC		%	2

NC = Non-calculable

Edmonton: 9331 - 48th Street T6B 2B4gElephpze(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Telephone(780) 465-1212 FAX(780) 450-4187

٠ 4

JACQUES WHITFORD LTD. Attention: STEVE MOSSMAN Client Project #: 1013548 WOOD BUFFALO P.O. #: Site Reference:

Quality Assurance Report (Continued) Maxxam Job Number: EA630861

RPD = Relative Percent Difference

1) Please note that the recovery of some compounds are outside control limits however the overall quality control for this analysis meets our acceptability criteria.

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Telephone(780) 465-1212 FAX(780) 450-4187

्रं

Validation Signature Page

Maxxam Job #: A630861

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

____ HUS ΗF

'ille Cox

MICHELLE COX,

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

ANALYTICAL REQUEST FORM Pose /_ot_L		ANALYSIS REQUESTED					ZZZZZZ	1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2
1281-5077 Fax (403) 231-9468 Toll-free: (600) 336-7247)-655-1212 Fax (403) 450-4187 Toll-free: (607) 465-8839 046maralyfits.com た たくとくらいていたいたい たくとくらいていたいたいたいたいたいでは、アロション (600) 536-7247 たくしんしんいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいたいた	PC: bc: Bampler's Initials IVA	BLOX CMEPHCP CMEPHCP	baseveed Houds Houds Base Commune # Commune # Comm	9 9 9 XXX XXX XXX XXX XXX XX XX XX XX XX XX	Z Z X X X X X X X X X X X X X X X X X X	1402041 -1409A		14/06 July 14/0 CUARS 3: 50
Jalgery 2021 - 41st Ave. NF. TZE 6F2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Pr. (403) 2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 6F2 Pr. (403) 2 Pr. (403) 2 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 7 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 7 Pr. (403) 2 Jalminton. 5019 - 42 Ave TGE 7 Pr. (403) 2	<u>р</u> 458 ⁵ ес 1/03-	に REPORT DISTRIBUTION・ PST [Mail] Fax CDW0G 怪 PDF] Exoal] Other CE0 CE0 CE0 CE0 CE0 Finalt <u>Scrito Scrito (2) AC6/ VSC UT</u> I ali recort	METALS: (WATERS): Dioal Extractable Mu for Date/Time Sample Tipe Matrix Sampled Grab/Comp	and subter	Cadera Cardena		12 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	NTER Dissolved Poperhease Face Filtered a
Max Analysics Inc Invoice To: Requ Company Name <u>Accords</u>	Phone / Face: Div/203-23(1-3	REGULATORY REQUIREMENTS: AT1 Soil Contamination PST COME COME FWAL Regulatory Limits to appear on Final report SERVICE REQUESTED: Outor Processing States Sta	Date Request Date Request REGULAR funationed Sample Identification	1 <u>РС-МШТ</u> 2 <u>РС-МШТ</u> 4 <u>5</u> С-МШЗ	5 HC - MW16 6 HC - MW13 7 HC - PUP	10 11 11	12 ¹⁴ For water samples, please indicate if	Relinculation By Conf. Has Bignatures COMMENTS/SPECIAL INSTRUCTIONS

۱,

Your Project #: 1013548 Site: PINE LAKE/WOOD BUFFALO PARK Coding # NSD016300 Your C.O.C. #: 133604

Attention: STEVE BOURN

JACQUES WHITFORD LTD. YELLOWKNIFE PO BOX 1680 Suite 201 5103 51 Avenue Yellowknife, NT Canada X1A 2P3

Report Date: 2006/06/30

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A626999

Received: 2006/06/23, 17:15

Sample Matrix: Leachate # Samples Received: 1

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
BTEX in Leachates by P&T GC/MS	1	2006/06/27	2006/06/28	EENVSOP-00003 V.3	EPA SW846 EPA 1311
Mercury (Leachable)	1	2006/06/27	2006/06/27	EENVSOP-00031 V.1	EPA 245.1
ICP Metals on leachate	1	N/A	2006/06/27	EENVSOP-00034 V.1	EPA SW846 6010B

Sample Matrix: Soil

Samples Received: 27

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Boron (Hot Water Soluble)	6	N/A	2006/06/27	EENVSOP-00034 V.1	SSMA 12.2.2
BTEX by HS GC/MS (MeOH extract)	10	2006/06/25	2006/06/27	EENVSOP-00004 V.2	EPA SW-846 8260B/502
Chloride by IC (Soluble)	1	N/A	2006/06/26	EENVSOP-00055 V.1	SM 4110 B
Chromium, Hexavalent (soil)	6	2006/06/27	2006/06/27	EENVSOP-00067 V.2	SM
F1-BTEX Soil Cal	19	2006/06/26	2006/06/26		
CCME Hydrocarbons (F1; MeOH; HSGC)	9	2006/06/25	2006/06/27	EENVSOP-00002 V.5	
CCME Hydrocarbons (F1; MeOH; HSGC)	7	2006/06/25	2006/06/28	EENVSOP-00002 V.5	
CCME Hydrocarbons (F1; MeOH; HSGC)	3	2006/06/27	2006/06/27	EENVSOP-00002 V.5	
CCME Hydrocarbons (F2-F4 in soil)	8	2006/06/27	2006/06/27	OR-412 v1.0	CWS PHCS Tier 1
CCME Hydrocarbons (F2-F4 in soil)	11	2006/06/27	2006/06/28	OR-412 v1.0	CWS PHCS Tier 1
Flash Point	1	2006/06/26	2006/06/26	EENVSOP-00079 V.1	ASTM D3828-93
Free Liquid	1	N/A	2006/06/27	CAL SOP# 0043	GRAVIMETRIC
Ethylene, Di, Tri & Tetraethylene glycol Ø	2	N/A	2006/06/27	CAL SOP# 0058	GC/FID-EXTRACTION
Mercury in Soil by CVAA	6	N/A	2006/06/28	EENVSOP-00032 V.1	EPA SW846 7471B
Elements by ICPMS (total) - Partial	6	N/A	2006/06/28	EENVSOP-00123 V.1	EPA SW 846 6020 A
ICP - Acid Extractable - Soil	6	2006/06/27	2006/06/27	EENVSOP-00034 V.1	EPA SW846 6010B
Moisture	27	N/A	2006/06/27	GL107 v 4.0	SSMA 51.2
PAH in Soil by GC/MS (Extended)	7	2006/06/26	2006/06/28	OR-405 v 2.1	EPA 3510C/8270D
pH (I:1 Extract)	1	2006/06/26	2006/06/26	EENVSOP-00053 V.1	SM 4500 H
Particle Size by Sieve (75 micron)	4	2006/06/27	2006/06/27	EENVSOP-00077 V.1	SSMA 47.4
Saturated Paste	1	2006/06/26	2006/06/26	EENVSOP-00046 V.1	SSMA 18.2.2
Hydrocarbon by IR (Mineral oil & grease) (2)	1	N/A	2006/06/28	CAL SOP# 0064, EDM SOP# 0050	Mod. EPA 3550, 9071A
VOCs in Soil by P&T GC/MS (Std List)	9	N/A	2006/06/27	EENVSOP-00003 V.3	EPA SW843 8260 B

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Telephone(780) 465-1212 FAX(780) 450-4187 Page 1 of 48 ../2

Your Project #: 1013548 Site: PINE LAKE/WOOD BUFFALO PARK Coding # NSD016300 Your C.O.C. #: 133604

Attention: STEVE BOURN

JACQUES WHITFORD LTD. YELLOWKNIFE PO BOX 1680 Suite 201 5103 51 Avenue Yellowknife, NT Canada X1A 2P3

Report Date: 2006/06/30

CERTIFICATE OF ANALYSIS

-2-

(1) This test was performed by Maxxam Calgary

(2) TPH by IR is reported on a wet weight basis.

Encryption Key

Sisavath Phonharath 30 Jun 2006 09:28:13 -06:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

SISAVATH PHONHARATH, Project Manager Email: sisavath.phonharath@maxxamanalytics.com Phone# (780) 465-1212

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 2 Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Telephone(780) 465-1212 FAX(780) 450-4187 Page 2 of 48

CCME METALS - FULL REG. (SOIL)

Maxxam ID Sampling Date		B76150	B76153	B76155	B76170	 	┨
COC Number		2006/06/19 133604	2006/06/20 133604	2006/06/20 133604	2006/06/22 133604		
	Units		PL-MW1-SA6		PC-MW1-SA1	RDL	QC Batch
Elements							
Soluble (Hot water) Boron (B)	mg/kg	ND	0.2	0.1	0.3	0.1	1178286
Mercury (Hg)	mg/kg	ND	0.08	ND	ND	0.05	1179256
Metals							
Soluble (5:1) Hex. Chromium (Cr 6+)	mg/kg	ND	ND	ND	ND	0.3	1177537
Elements							
Total Aluminum (Al)	mg/kg	848	9030	3510	6100	10	1178287
Total Antimony (Sb)	mg/kg	ND	ND	ND	ND	2	1178287
Total Arsenic (As)	mg/kg	ND	8	2	4	1	1177914
Total Barium (Ba)	mg/kg	9.4	216	48.9	97.8	0.2	1178287
Total Beryllium (Be)	mg/kg	ND	0.5	0.2	0.3	0.1	1178287
Total Bismuth (Bi)	mg/kg	ND .	ND	ND	ND	10	1178287
Total Cadmium (Cd)	mg/kg	ND	0.9	ND	ND	0.2	1178287
Total Calcium (Ca)	mg/kg	29000	23300	22800	7470	20	1178287
Total Chromium (Cr)	mg/kg	2	18	6	13	1	1178287
Total Cobalt (Co)	mg/kg	0.9	10.2	2.5	6.2	0.4	1178287
Total Copper (Cu)	mg/kg	ND	25	ND	8	2	1178287
Total Iron (Fe)	mg/kg	1770	23100	9940	15500	10	1178287
Total Lead (Pb)	mg/kg	ND	12	ND	ND	10	1178287
Total Lithium (Li)	mg/kg	1.6	11.7	3.4	6.5	0.4	1178287
Total Magnesium (Mg)	mg/kg	3820	9580	5890	3730	10	1178287
Total Manganese (Mn)	mg/kg	56.9	339	143	316	0.4	1178287
Total Molybdenum (Mo)	mg/kg	ND	1.3	ND	0.9	0.5	1177914
Total Nickel (Ni)	mg/kg	ND	30	6	18	4	1178287
Total Phosphorus (P)	mg/kg	73	798	206	574	4	1178287
Total Potassium (K)	mg/kg	168	1 140	429	625	20	1178287
Total Selenium (Se)	mg/kg	ND	ND	ND	ND	0.5	1177914
Total Silver (Ag)	mg/kg	ND	ND	ND	ND	1	1178287
Total Sodium (Na)	mg/kg	22	106	24	53	10	1178287
Total Strontium (Sr)	mg/kg	14.7	48.4	16.4	20.1	0.4	1178287
Total Sulphur (S)	mg/kg	71	135	81	87	40	1 178287
Total Thallium (TI)	mg/kg	ND	ND	ND	ND	1	1177914
Total Tin (Sn)	mg/kg	ND	ND	ND	ND	2	1178287

CCME METALS - FULL REG. (SOIL)

	B76150	B76153	B76155	B76170		
	2006/06/19	2006/06/20	2006/06/20	2006/06/22		
	133604	133604	133604	133604		
Units	PL-TP2-SA2	PL-MW1-SA6	PL-MW3-SA1	PC-MW1-SA1	RDL	QC Batch
mg/kg	41.6	150	88.2	196	0.8	1178287
mg/kg	ND	1.3	0.2	0.5	0.2	1177914
mg/kg	3	35	12	25	2	1178287
mg/kg	3	83	14	52	2	1178287
mg/kg	ND	3	ND	ND	1	1178287
	mg/kg mg/kg mg/kg mg/kg	2006/06/19 133604 Units PL-TP2-SA2 mg/kg 41.6 mg/kg ND mg/kg 3 mg/kg 3	2006/06/19 2006/06/20 133604 133604 Units PL-TP2-SA2 PL-MW1-SA6 mg/kg 41.6 150 mg/kg ND 1.3 mg/kg 3 35 mg/kg 3 83	2006/06/19 2006/06/20 2006/06/20 133604 133604 133604 Units PL-TP2-SA2 PL-MW1-SA6 PL-MW3-SA1 mg/kg 41.6 150 88.2 mg/kg ND 1.3 0.2 mg/kg 3 35 12 mg/kg 3 83 14	2006/06/19 2006/06/20 2006/06/20 2006/06/22 133604 133604 133604 133604 Units PL-TP2-SA2 PL-MW1-SA6 PL-MW3-SA1 PC-MW1-SA1 mg/kg 41.6 150 88.2 196 mg/kg ND 1.3 0.2 0.5 mg/kg 3 35 12 25 mg/kg 3 83 14 52	2006/06/19 2006/06/20 2006/06/20 2006/06/22 133604 133604 133604 133604 133604 Units PL-TP2-SA2 PL-MW1-SA6 PL-MW3-SA1 PC-MW1-SA1 RDL mg/kg 41.6 150 88.2 196 0.8 mg/kg ND 1.3 0.2 0.5 0.2 mg/kg 3 35 12 25 2 mg/kg 3 83 14 52 2

B76172 B76175 Maxxam ID Sampling Date 2006/06/22 2006/06/22 COC Number 133604 133604 Units PC-BH2-SA2 PC-MW4-SA2 RDL QC Batch Elements 1178286 0.2 0.5 0.1 Soluble (Hot water) Boron (B) mg/kg 1179256 0.06 0.05 Mercury (Hg) ND mg/kg Metals Soluble (5:1) Hex. Chromium (Cr 6+) mg/kg ND ND 0.3 1177537 Elements Total Aluminum (Al) mg/kg 7060 12000 10 1178287 ND ND 2 1178287 Total Antimony (Sb) mg/kg 5 7 1 1177914 Total Arsenic (As) mg/kg Total Barium (Ba) mg/kg 92.0 298 0.2 1178287 0.4 0.6 0.1 1178287 Total Beryllium (Be) mg/kg ND ND 10 1178287 Total Bismuth (Bi) mg/kg 0.2 ND 0.6 1178287 Total Cadmium (Cd) mg/kg 11000 33200 20 1178287 Total Calcium (Ca) mg/kg 15 22 1 1178287 Total Chromium (Cr) mg/kg 0.4 Total Cobalt (Co) mg/kg 7.5 12.1 1178287 15 25 2 1178287 Total Copper (Cu) mg/kg 27800 1178287 Total Iron (Fe) mg/kg 19600 10 Total Lead (Pb) mg/kg ND 13 10 1178287 mg/kg Total Lithium (Li) 8.6 16.7 0.4 1178287 4970 9590 10 1178287 Total Magnesium (Mg) mg/kg 241 452 0.4 1178287 Total Manganese (Mn) mg/kg 0.5 0.7 1.3 1177914 Total Molybdenum (Mo) mg/kg 25 34 4 1178287 Total Nickel (Ni) mg/kg 685 758 4 1178287 Total Phosphorus (P) mg/kg 933 1300 20 1178287 Total Potassium (K) mg/kg 0.5 ND 1177914 ND Total Selenium (Se) mg/kg 1 ND 1178287 Total Silver (Ag) mg/kg ND 88 1180 10 1178287 Total Sodium (Na) mg/kg 32.7 80.7 0.4 1178287 Total Strontium (Sr) mg/kg 135 40 1178287 Total Sulphur (S) mg/kg 66 mg/kg ND ND 1 1177914 Total Thallium (TI) Total Tin (Sn) ND ND 2 1178287 mg/kg

CCME METALS - FULL REG. (SOIL)

ND = Not detected

RDL = Reportable Detection Limit

JACQUES WHITFORD LTD. Client Project #: 1013548 Site Reference: PINE LAKE/WOOD BUFFALO PARK Sampler Initials: SB

CCME METALS - FULL REG. (SOIL)

Maxxam ID		B76172	B76175		
Sampling Date		2006/06/22	2006/06/22		
COC Number		133604	133604		
	Units	PC-BH2-SA2	PC-MW4-SA2	RDL	QC Batch
Total Titanium (Ti)	mg/kg	174	162	0.8	1178287
Total Uranium (U)	mg/kg	0.6	0.9	0.2	1177914
Total Vanadium (V)	mg/kg	28	38	2	1178287
Total Zinc (Zn)	mg/kg	56	78	2	1178287
Total Zirconium (Zr)	mg/kg	3	4	1	1178287
					<u> </u>

.

CCME PHC SOIL PACKAGE (SOIL)

B76159		
2006/06/21		
133604	<u> </u>	
HC-MW13-SA4	RDL	QC Batch
222	10	1175942
220	10	1175965
4500	10	1178132
733	10	1178132
27	10	1178132
Yes	1	1178132
ND	0.04	1175941
ND	0.1	117594 1
1.2	0.1	1175941
1.2	0.1	1175941
ND	0.1	1175941
1.2	0.1	1175941
89	N/A	1175942
79	N/A	1178132
91	N/A	1175941
101	N/A	1175941
125	N/A	1175941
94	N/A	1175941
	125	125 N/A

CCME PHC SOIL PACKAGE (SOIL)

Maxxam ID		B76160		
Sampling Date		2006/06/21		
COC Number	1	133604		000.0
	Units	HC-MW13-SA9	RUL	QC Batc
Ext. Pet. Hydrocarbon				
F1 (C06-C10)	mg/kg	13	10	1175942
F1 (C06-C10) - BTEX	mg/kg	13	10	117596
F2 (C10-C16 Hydrocarbons)	mg/kg	17	10	117814
F3 (C16-C34 Hydrocarbons)	mg/kg	77	10	117814
F4 (C34-C50 Hydrocarbons)	mg/kg	29	10	117814
Reached Baseline at C50	mg/kg	Yes	1	1178141
Volatiles				
Extractable (MeOH) Benzene	mg/kg	ND	0.04	1175941
Extractable (MeOH) Toluene	mg/kg	ND	0.1	1175941
Extractable (MeOH) Ethylbenzene	mg/kg	ND	0.1	1175941
Extractable (MeOH) m & p-Xylene	mg/kg	ND	0.1	1175941
Extractable (MeOH) o-Xylene	mg/kg	ND	0.1	1175941
Extractable (MeOH) Xylenes (Total)	mg/kg	ND	0.1	1 175941
Surrogate Recovery (%)				
4-BROMOFLUOROBENZENE (sur.)	%	94	N/A	1175942
O-TERPHENYL (sur.)	%	108	N/A	1178141
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	100	N/A	1175941
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	100	N/A	1175941
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	114	N/A	1175941
Extractable (MeOH) D8-TOLUENE (sur.)	%	97	N/A	1175941

CCME PHC SOIL PACKAGE (SOIL)

Maxxam ID		B76163	B76163		
Sampling Date		2006/06/21	2006/06/21		
COC Number		133604	133604		
	Units	HC-MW16-SA7	HC-MW16-SA7	RDL	QC Batch
			Lab-Dup	I	
Ext. Pet. Hydrocarbon					
F1 (C06-C10)	mg/kg	11	ND	10	1175944
F1 (C06-C10) - BTEX	mg/kg	11	N/A	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	45	N/A	10	1178141
F3 (C16-C34 Hydrocarbons)	mg/kg	50	N/A	10	1178141
F4 (C34-C50 Hydrocarbons)	mg/kg	20	N/A	10	1178141
Reached Baseline at C50	mg/kg	Yes	N/A	1	1178141
Volatiles					
Extractable (MeOH) Benzene	mg/kg	ND	ND	0.04	1175943
Extractable (MeOH) Toluene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Ethylbenzene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) m & p-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) o-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Xylenes (Total)	mg/kg	ND	ND	0.1	1175943
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	85	74	N/A	1175944
O-TERPHENYL (sur.)	%	104	N/A	N/A	1178141
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	102	101	N/A	1175943
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	112	110	N/A	1175943
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	92	92	N/A	1175943
Extractable (MeOH) D8-TOLUENE (sur.)	%	101	100	N/A	1175943

ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit

CCME PHC SOIL PACKAGE (SOIL)

Maxxam ID		B76164	B76165		
Sampling Date		2006/06/21	_2006/06/21		
COC Number		133604	133604		
	Units	HC-BH17-SA5	HC-BH18-SA4	RDL	QC Batch
Ext. Pet. Hydrocarbon					
F1 (C06-C10)	mg/kg	36	458	10	1175944
F1 (C06-C10) - BTEX	mg/kg	36	455	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	209	5760	10	1178141
F3 (C16-C34 Hydrocarbons)	mg/kg	51	678	10	1178141
F4 (C34-C50 Hydrocarbons)	mg/kg	ND	10	10	1178141
Reached Baseline at C50	mg/kg	Yes	Yes	1	1178141
Volatiles					
Extractable (MeOH) Benzene	mg/kg	ND	ND	0.04	1175943
Extractable (MeOH) Toluene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Ethylbenzene	mg/kg	ND	1.8	0.1	1175943
Extractable (MeOH) m & p-Xylene	mg/kg	ND	1.1	0.1	1175943
Extractable (MeOH) o-Xylene	mg/kg	ND	0.4	0.1	1175943
Extractable (MeOH) Xylenes (Total)	mg/kg	ND	1.5	0.1	1175943
Surrogate Recovery (%)				-	
4-BROMOFLUOROBENZENE (sur.)	%	79	86	N/A	1175944
O-TERPHENYL (sur.)	%	104	114	N/A	1178141
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	101	105	N/A	1175943
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	114	112	N/A	1175943
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	95	96	N/A	1175943
Extractable (MeOH) D8-TOLUENE (sur.)	%	101	99	N/A	1175943

RDL = Reportable Detection Limit

CCME PHC SOIL PACKAGE (SOIL)

		B76166	B76167		
Sampling Date		2006/06/21	2006/06/21	ļ	ļ
COC Number		133604	133604		00 0.44
	Units	HC-BH19-SA5	HC-BH14-SA5	RDL	QC Batch
Ext. Pet. Hydrocarbon					
F1 (C06-C10)	mg/kg	36	ND	10	1175944
F1 (C06-C10) - BTEX	mg/kg	36	ND	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	223	67	10	1178141
F3 (C16-C34 Hydrocarbons)	mg/kg	51	39	10	1178141
F4 (C34-C50 Hydrocarbons)	mg/kg	12	13	10	1178141
Reached Baseline at C50	mg/kg	Yes	Yes	1	1178141
Volatiles					
Extractable (MeOH) Benzene	mg/kg	ND	ND	0.04	1175943
Extractable (MeOH) Toluene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Ethylbenzene	mg/kg	0.1	ND	0.1	1175943
Extractable (MeOH) m & p-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) o-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Xylenes (Totał)	mg/kg	NÐ	ND	0.1	1175943
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	85	79	N/A	1175944
O-TERPHENYL (sur.)	%	91	104	N/A	1178141
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	100	100	N/A	1175943
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	118	122	N/A	1175943
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	80	102	N/A	1175943
	%	101	103	N/A	1175943

CCME PHC SOIL PACKAGE (SOIL)

Maxxam ID		B76168	B76176		
Sampling Date	ļ	2006/06/21	2006/06/22		
COC Number	Unite	133604 HC-BH15-SA4	133604		DC Batala
	Units	HC-BH15-5A4	PC-MW3-5A5	RUL	NC Batch
Ext. Pet. Hydrocarbon					
F1 (C06-C10)	mg/kg	27	ND	10	1175944
F1 (C06-C10) - BTEX	mg/kg	27	ND	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	370	ND	10	1178141
F3 (C16-C34 Hydrocarbons)	mg/kg	55	ND	10	1178141
F4 (C34-C50 Hydrocarbons)	mg/kg	ND	ND	10	1178141
Reached Baseline at C50	mg/kg	Yes	Yes	1	1178141
Volatiles					
Extractable (MeOH) Benzene	mg/kg	ND	ND	0.04	1175943
Extractable (MeOH) Toluene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Ethylbenzene	mg/kg	0.2	ND	0.1	1175943
Extractable (MeOH) m & p-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) o-Xylene	mg/kg	ND	ND	0.1	1175943
Extractable (MeOH) Xylenes (Total)	mg/kg	ND	ND	0.1	1175943
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	78	80	N/A	1175944
O-TERPHENYL (sur.)	%	94	97	N/A	1178141
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	100	100	N/A	1175943
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	124	118	N/A	1175943
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	99	99	N/A	1175943
Extractable (MeOH) D8-TOLUENE (sur.)	%	103	104	N/A	1175943
		-	•	•	-
ND = Not detected					
••					
VD = Not detected V/A = Not Applicable RDL = Reportable Detection Limit					

4

JACQUES WHITFORD LTD. Client Project #: 1013548 Site Reference: PINE LAKE/WOOD BUFFALO PARK Sampler Initials: SB

PAHS SOIL CCME (SOIL)

Maxxam ID		B76160	B76163	B76164	B76165		
Sampling Date		2006/06/21	2006/06/21	2006/06/21	2006/06/21		
COC Number		133604	133604	133604	133604		
	Units	HC-MW13-SA9	HC-MW16-SA7	HC-BH17-SA5	HC-BH18-SA4	RDL	QC Batc
Polycyclic Aromatics							
Naphthalene	mg/kg	ND	0.06	0.91	14	0.05	1176320
2-Methylnaphthalene	mg/kg	0.06	0.09	1.4	51	0.05	1176320
Ácenaphthylene	mg/kg	ND	ND	0.05	0.34	0.05	1176320
Acenaphthene	mg/kg	ND	ND	0.10	1.1	0.05	1176320
Fluorene	mg/kg	ND	ND	0.35	2.5	0.05	1176320
Phenanthrene	mg/kg	0.06	0.07	0.43	1.3	0.05	117632
Anthracene	mg/kg	ND	ND	ND	ND	0.05	117632
Fluoranthene	mg/kg	ND	ND	ND	ND	0.05	117632
Pyrene	mg/kg	ND	ND	ND	ND	0.05	117632
Benzo(a)anthracene	mg/kg	ND	ND	ND	ND	0.05	1176320
Chrysene	mg/kg	ND	ND	ND	ND	0.05	1176320
Benzo(b&j)fluoranthene	mg/kg	ND	ND	ND	ND	0.05	117632
Benzo(k)fluoranthene	mg/kg	ND -	ND	ND	ND	0.05	117632
Benzo(a)pyrene	mg/kg	ND	ND	ND	ND	0.05	117632
Indeno(1,2,3-cd)pyrene	mg/kg	ND	ND	ND	ND	0.05	117632
Dibenz(a,h)anthracene	mg/kg	ND	ND	ND	ND	0.05	117632
Benzo(g,h,i)perylene	mg/kg	ND	ND	ND	ND	0.05	117632
Surrogate Recovery (%)							
D10-ANTHRACENE (sur.)	%	107	108	109	112	N/A	117632
D12-BENZO(A)PYRENE (sur.)	%	92	88	79	81	N/A	117632
D8-ACENAPHTHYLENE (sur.)	%	97	106	100	109	N/A	117632
TERPHENYL-D14 (sur.)	%	121	118	113	115	N/A	117632

ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit

PAHS SOIL CCME (SOIL)

Maxxam ID	-	B76166	B76167	B76168		
Sampling Date		2006/06/21	2006/06/21	2006/06/21		
COC Number	L	133604	133604	133604		
	Units	HC-BH19-SA5	HC-BH14-SA5	HC-BH15-SA4	RDL	QC Batch
Polycyclic Aromatics					1	
Naphthalene	mg/kg	2.7	ND	2.7	0.05	1176320
2-Methylnaphthalene	mg/kg	5.3	0.07	4.6	0.05	1176320
Acenaphthylene	mg/kg	ND	ND	NĎ	0.05	1176320
Acenaphthene	mg/kg	0.05	ND	ND	0.05	1176320
Fluorene	mg/kg	0.17	ND	0.14	0.05	1176320
Phenanthrene	mg/kg	0.19	0.06	0.14	0.05	1176320
Anthracene	mg/kg	ND	ND	ND	0.05	1176320
Fluoranthene	mg/kg	ND	ND	ND	0.05	1176320
Pyrene	mg/kg	ND	ND	ND	0.05	1176320
Benzo(a)anthracene	mg/kg	ND	ND	ND	0.05	1176320
Chrysene	mg/kg	ND	ND	ND	0.05	1176320
Велzo(b&j)fluoranthene	mg/kg	ND	ND	ND	0.05	1176320
Benzo(k)fluoranthene	mg/kg	ND	ND	ND	0.05	1176320
Benzo(a)pyrene	mg/kg	ND	ND	ND	0.05	1176320
Indeno(1,2,3-cd)pyrene	mg/kg	ND	ND	ND	0.05	1176320
Dibenz(a,h)anthracene	mg/kg	ND	ND	ND	0.05	1176320
Benzo(g,h,i)perylene	mg/kg	ND	ND	ND	0.05	1176320
Surrogate Recovery (%)						
D10-ANTHRACENE (sur.)	%	102	101	100	N/A	1176320
D12-BENZO(A)PYRENE (sur.)	%	75	81	77	N/A	1176320
D8-ACENAPHTHYLENE (sur.)	%	100	96	98	N/A	1176320
TERPHENYL-D14 (sur.)	%	109	112	108	N/A	1176320

N/A = Not Applicable RDL = Reportable Detection Limit

RESULTS OF CHEMICAL ANALYSES OF LEACHATE

Maxxam ID		B76158		
Sampling Date	-	2006/06/20		
COC Number		133604		
	Units	LFD-1	RDL	QC Batch
	1		-	
Elements	·			
Leachable Silver (Ag)	mg/L	ND	0.5	1178746
Leachable Arsenic (As)	mg/L	ND	0.5	1178746
Leachable Boron (B)	mg/L	ND	50	1178746
Leachable Barium (Ba)	mg/L	ND	10	1178746
Leachable Beryllium (Be)	mg/L	ND	0.5	1178746
Leachable Cadmium (Cd)	mg/L	ND	0.1	1178746
Leachable Cobalt (Co)	mg/L	ND	10	1178746
Leachable Chromium (Cr)	mg/L	ND	0.5	1178746
Leachable Copper (Cu)	mg/L	ND	10	1178746
Leachable Iron (Fe)	mg/L	ND	100	1178746
Leachable Nickel (Ni)	mg/L	ND	0.5	1178746
Leachable Lead (Pb)	mg/L	ND	0.5	1178746
Leachable Antimony (Sb)	mg/L	ND	50	1178746
Leachable Selenium (Se)	mg/L	ND	0.1	1178746
Leachable Thallium (TI)	mg/L	ND	0.5	1178746
Leachable Uranium (U)	mg/L	ND	0.5	1178746
Leachable Vanadium (V)	mg/L	ND	5	1178746
Leachable Zinc (Zn)	mg/L	ND	50	1178746
Leachable Zirconium (Zr)	mg/L	ND	50	1178746

ND = Not detected RDL = Reportable Detection Limit

Page 15 of 48

ELEMENTS BY ATOMIC SPECTROSCOPY (LEACHATE)

	Units	LFD-1	RDL	QC Batch
COC Number		133604		
Sampling Date		2006/06/20		
Maxxam ID		B76158		

Elements				
Leachable Mercury (Hg)	ug/L	ND	0.05	1177915

ND = Not detected RDL = Reportable Detection Limit

BTEX BY GC-MS (LEACHATE)

Maxxam ID		B76158		
Sampling Date	ļ	2006/06/20		
COC Number	<u>. </u>	133604	1.	
	Units	LFD-1	RDE	QC Batch
Monocyclic Aromatics			<u> </u>	
Leachable (ZH) Benzene	ug/L	ND	10	1178439
Leachable (ZH) Ethylbenzene	ug/L	ND	10	1178439
Leachable (ZH) m & p-Xylene	ug/L	ND	20	1178439
Leachable (ZH) o-Xylene	ug/L	ND	10	1178439
Leachable (ZH) Toluene	ug/L	ND	10	1178439
Leachable (ZH) Xylenes (Total)	ug/L	ND	20	1178439
Surrogate Recovery (%)				
Leachable (ZH) 4-BROMOFLUOROBENZENE (sur.)	%	101	N/A	1178439
Leachable (ZH) D4-1,2-DICHLOROETHANE (sur.)	%	81	N/A	1178439
Leachable (ZH) D8-TOLUENE (sur.)	%	102	N/A	1178439

RDL = Reportable Detection Limit

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		B76147	B76147	B76150	B76151		
Sampling Date		2006/06/19	2006/06/19	2006/06/19	2006/06/19		
COC Number		133604	133604	133604	133604		
	Units	PL-TP1-SA3	PL-TP1-SA3	PL-TP2-SA2	PL-TP3-SA1	RDL	QC Batch
			Lab-Dup				
			Lab-Dup	<u> </u>			
Physical Properties			Lab-Dup				

Maxxam ID		B76152	B76153	B76154	B76155		
Sampling Date		2006/06/19	2006/06/20	2006/06/20	2006/06/20		
COC Number		133604	133604	133604	133604		
	Units	PL-TP4-SA2	PL-MW1-SA6	PL-MW2-SA2	PL-MW3-SA1	RDL	QC Batch

Physical Properties							
Moisture	%	1.6	17.2	4.8	3.7	0.3	1176385

RDL = Reportable Detection Limit

FOR OIL ANALYSES		l	I				т
	Units	PL-GS-FINE	PL-GS-COARSE	LFD-1	LFD-1 Lab-Dup	RDL.	QC Batch
COC Number		133604	133604	133604	133604		
Sampling Date		2006/06/20	2006/06/20	2006/06/20	2006/06/20		
Maxxam ID		B76156	B76157	B76158	B76158		

	1 1						1
Flash point	°C	N/A	N/A	>61	N/A	23	1176700
Misc. Organics							
Total Petroleum Hydrocarbon	mg/kg	N/A	N/A	124	122	50	1179249
Soluble Parameters							
Soluble (1:1) pH	N/A	N/A	N/A	7.9	N/A	0.1	1176876
Saturation %	%	N/A	N/A	84	N/A	1	1176497
Soluble Chloride (Cl)	mg/L	N/A	N/A	178	N/A	10	1177042
Physical Properties							
Free Liquid	ml/kg	N/A	N/A	ND	N/A	10	1177778
Moisture	%	18.8	5.0	12.3	N/A	0.3	1176385
Sieve - #200 (>0.075mm)	%	0.6	93.2	N/A	N/A	0.1	1177773
Sieve - <200 Mesh	%	99.4	6.8	N/A	N/A	0.1	1177773

ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit

RESULTS OF CHEMICAL ANALYSES OF SOIL

Maxxam ID		B76159	B76160	B76163	B76164		
Sampling Date		2006/06/21	2006/06/21	2006/06/21	2006/06/21		
COC Number		133604	133604	133604	133604		
	Units	HC-MW13-SA4	HC-MW13-SA9	HC-MW16-SA7	HC-BH17-SA5	RDL	QC Batch
			·		1		·····
Physical Properties							
Moisture	%	24.8	28.4	28.1	23.3	0.3	1176385
Moisture	70	24.0	20.4	20.1	23.3	0.5	11703
RDL = Reportable Detecti	on Limit						

Maxxam ID		B76165	B76166	B76167	B76168		
Sampling Date		2006/06/21	2006/06/21	2006/06/21	2006/06/21		
COC Number		133604	133604	133604	133604		
	Units	HC-BH18-SA4	HC-BH19-SA5	HC-BH14-SA5	HC-BH15-SA4	RDL	QC Batch
		<u>r</u>	T	1	1	1	1
Physical Properties							
Moisture	%	24.1	25.5	24.3	24.5	0.3	1176385
· · · · ·		1			•	•	
RDL = Reportable Detecti	on Limit						

Maxxam ID		B76169	B76170		B76171		
Sampling Date		2006/06/21	2006/06/22		2006/06/22		
COC Number		133604	133604		133604		
	Units	HC-GS	PC-MW1-SA1	QC Batch	PC-MW1-SA5	RDL	QC Batch

Physical Properties							
Moisture	%	25.7	8.5	1176385	23.8	0.3	1176390
Sieve - #200 (>0.075mm)	%	0.3	N/A	1177773	N/A	0.1	N/A
Sieve - <200 Mesh	%	99.7	N/A	1177773	N/A	0.1	N/A

N/A = Not Applicable RDL = Reportable Detection Limit

RESULTS OF CHEMICAL ANALYSES OF SOIL

	B76172	B76173	B76174	B76175		
	2006/06/22	2006/06/22	2006/06/22	2006/06/22		
	133604	133604	133604	133604		
Units	PC-BH2-SA2	PC-BH2-SA5	PC-MW3-SA5	PC-MW4-SA2	RDL	QC Batch
%	17.3	21.8	20.2	20.9	0.3	1176390
Limit	F			••••••	1	
	%	2006/06/22 133604 Units PC-BH2-SA2	2006/06/22 2006/06/22 133604 133604 Units PC-BH2-SA2 PC-BH2-SA5 % 17.3 21.8	2006/06/22 2006/06/22 2006/06/22 133604 133604 133604 Units PC-BH2-SA2 PC-BH2-SA5 PC-MW3-SA5 % 17.3 21.8 20.2	2006/06/22 2006/06/22 2006/06/22 2006/06/22 133604 133604 133604 133604 Units PC-BH2-SA2 PC-BH2-SA5 PC-MW3-SA5 PC-MW4-SA2 % 17.3 21.8 20.2 20.9	2006/06/22 2006/06/22 2006/06/22 2006/06/22 133604 133604 133604 133604 Units PC-BH2-SA2 PC-BH2-SA5 PC-MW3-SA5 PC-MW4-SA2 RDL % 17.3 21.8 20.2 20.9 0.3

	Units	PC-MW5-SA5	PC-GS	RDL	QC Batch
COC Number		133604	133604		
Sampling Date		2006/06/22	2006/06/22		
Maxxam ID		B76176	B76177		

Physical Properties					
Moisture	%	21.1	21.5	0.3	1176390
Sieve - #200 (>0.075mm)	%	N/A	29.5	0.1	1177773
Sieve - <200 Mesh	%	N/A	70.5	0.1	1177773

N/A = Not Applicable RDL = Reportable Detection Limit

PETROLEUM HYDROCARBONS (CCME)

				oumpion init		
	PETROL	EUM HYDR	OCARBONS	6 (CCME)	¥.	DUP OF SAZ
Maxxam ID		B76147	B76150	B76151	B76152	
Sampling Date		2006/06/19	2006/06/19	2006/06/19	2006/06/19	
COC Number		133604	133604	133604	133604	
	Units	PL-TP1-SA3	PL-TP2-SA2	PL-TP3-SA1	PL-TP4-SA2	RDL QC Batch

Ext. Pet. Hydrocarbon							
F1 (C06-C10)	mg/kg	ND	ND	ND	ND	10	1175942
F1 (C06-C10) - BTEX	mg/kg	ND	ND	ND	ND	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	13	ND	ND	ND	10	1178132
F3 (C16-C34 Hydrocarbons)	mg/kg	ND	ND	14	ND	10	1178132
F4 (C34-C50 Hydrocarbons)	mg/kg	21	17	20	16	10	1178132
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	Yes	1	1178132
Surrogate Recovery (%)							
4-BROMOFLUOROBENZENE (sur.)	%	96	88	81	86	N/A	1175942
O-TERPHENYL (sur.)	%	67	68	73	71	N/A	1178132

ND = Not detected N/A = Not Applicable

RDL = Reportable Detection Limit

Maxxam ID		B76153	B76154	B76155		
Sampling Date		2006/06/20	2006/06/20	2006/06/20		
COC Number		133604	133604	133604		
	Units	PL-MW1-SA6	PL-MW2-SA2	PL-MW3-SA1	RDL	QC Batch
Ext. Pet. Hydrocarbon						
F1 (C06-C10)	mg/kg	ND	ND	ND	10	1175942
F1 (C06-C10) - BTEX	mg/kg	ND	ND	ND	10	1175965
F2 (C10-C16 Hydrocarbons)	mg/kg	ND	ND	ND	10	1178132
F3 (C16-C34 Hydrocarbons)	mg/kg	18	ND	37	10	1178132
F4 (C34-C50 Hydrocarbons)	mg/kg	28	16	25	10	1178132
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	1	1178132
Surrogate Recovery (%)						
4-BROMOFLUOROBENZENE (sur.)	%	97	80	72	N/A	1175942
O-TERPHENYL (sur.)	%	76	71	72	N/A	1178 1 32
O-TERPHENYL (sur.) ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit	%	76	71	72	N/A	117813

ć

JACQUES WHITFORD LTD. Client Project #: 1013548 Site Reference: PINE LAKE/WOOD BUFFALO PARK Sampler Initials: SB

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		B76171	B76173	B76174		
Sampling Date	1	2006/06/22	2006/06/22	2006/06/22		
COC Number		133604	133604	133604		
	Units	PC-MW1-SA5	PC-BH2-SA5	PC-MW3-SA5	RDL	QC Batch
Ext. Pet. Hydrocarbon						
F1 (C06-C10)	mg/kg	ND	16	ND	10	1177924
F1 (C06-C10) - BTEX	mg/kg	ND	16	ND	10	1176999
F2 (C10-C16 Hydrocarbons)	mg/kg	ND	34	ND	10	1178141
F3 (C16-C34 Hydrocarbons)	mg/kg	27	26	ND	10	1178141
F4 (C34-C50 Hydrocarbons)	mg/kg	ND	ND	ND	10	1178141
Reached Baseline at C50	mg/kg	Yes	Yes	Yes	1	1178141
Surrogate Recovery (%)						
4-BROMOFLUOROBENZENE (sur.)	%	89	97	79	N/A	1177924
O-TERPHENYL (sur.)	%	102	95	94	N/A	1178141

GLYCOLS BY GC-FID (SOIL)

Maxxam ID		B76150		B76154		i i
Sampling Date		2006/06/19		2006/06/20		
COC Number		133604		133604		
	Units	PL-TP2-SA2	RDL	PL-MW2-SA2	RDL	QC Batch
	·····				T	.
Glycols						
Extractable (Water) Ethylene Glycol	mg/kg	ND	2.1	ND	2.1	1176883
Extractable (Water) Diethylene Glycol	mg/kg	ND	3.1	ND	3.2	1176883
Extractable (Water) Triethylene Glycol	mg/kg	ND	6.2	ND	6.4	1176883
Extractable (Water) Tetraethylene Glycol	mg/kg	ND	10	ND	11	1176883
Extractable (Water) Propylene Glycol	mg/kg	ND	10	ND	11	1176883
Surrogate Recovery (%)						
Extractable (Water) SULFOLANE (sur.)	%	100	N/A	97	N/A	1176883
ND = Not detected						
N/A = Not Applicable						
RDL = Reportable Detection Limit						

Maxxam ID Sampling Date	·	B76147 2006/06/19	B76147 2006/06/19		
Sampling Date		133604	133604		
	Units	PL-TP1-SA3	PL-TP1-SA3	RDL	QC Batch
			Lab-Dup		1
Volatiles					
Benzene	mg/kg	ND	ND	0.04	1175945
Bromodichloromethane	mg/kg	ND	ND	0.1	1175945
Bromoform	mg/kg	ND	ND	0.1	1175945
Bromomethane	mg/kg	ND	ND	0.2	1175945
Carbon tetrachloride	mg/kg	ND	ND	0.1	1175945
Chlorobenzene	mg/kg	ND	ND	0.1	1175945
Chlorodibromomethane	mg/kg	ND	ND	0.1	1175945
Chloroethane	mg/kg	ND	ND	0.1	1175945
Chloroform	mg/kg	ND	ND	0.1	1175945
Chloromethane	mg/kg	ND	ND	0.2	1175945
1,2-dibromoethane	mg/kg	ND	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethene	mg/kg	ND	ND	0.1	1175945
cis-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
Dichloromethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloropropane	mg/kg	ND	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
Ethylbenzene	mg/kg	ND	ND	0.1	1175945
Styrene	mg/kg	ND	ND	0.1	1175945
1,1,1,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
Tetrachloroethene	mg/kg	ND	ND	0.1	1175945
Toluene	mg/kg	ND	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2-trichloroethane	mg/kg	ND	ND	0.1	1175945
Trichloroethene	mg/kg	ND	ND	0.1	1175945

VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		B76147	B76147		
Sampling Date		2006/06/19	2006/06/19		
COC Number		133604	133604		
	Units	PL-TP1-SA3	PL-TP1-SA3 Lab-Dup	RDL	QC Batcl
				1	
Trichlorofluoromethane	mg/kg	ND	ND	0.1	1175945
Vinyl chloride	mg/kg	ND	. ND	0.1	1175945
Xylenes (Total)	mg/kg	ND	ND	0.1	1175945
m & p-Xylene	mg/kg	ND	ND	0.1	1175945
o-Xylene	mg/kg	ND	ND	0.1	1175945
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	103	102	N/A	1175945
D10-ETHYLBENZENE (sur.)	%	102	102	N/A	1175945
D4-1,2-DICHLOROETHANE (sur.)	%	114	111	N/A	1175945
D8-TOLUENE (sur.)	%	101	101	N/A	1175945

RDL = Reportable Detection Limit

Maxxam ID		B76150	B76151		
Sampling Date COC Number		2006/06/19 133604	2006/06/19 133604	<u> </u>	
	Units	PL-TP2-SA2	PL-TP3-SA1	RDL	QC Batch
		г		4	1
Volatiles					
Benzene	mg/kg	NĎ	ND	0.04	1175945
Bromodichloromethane	mg/kg	ND	ND	0.1	1175945
Bromoform	mg/kg	ND	ND	0.1	1175945
Bromomethane	mg/kg	ND	ND	0.2	1175945
Carbon tetrachloride	mg/kg	ND	ND	0.1	1175945
Chlorobenzene	mg/kg	ND	ND	0.1	1175945
Chlorodibromomethane	mg/kg	ND	ND	0.1	1175945
Chloroethane	mg/kg	ND	ND	0.1	1175945
Chloroform	mg/kg	ND	NÐ	0.1	1175945
Chloromethane	mg/kg	ND	ND	0.2	1175945
1,2-dibromoethane	mg/kg	ND	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethene	mg/kg	ND	ND	0.1	1175945
cis-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
Dichloromethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloropropane	mg/kg	ND	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
Ethylbenzene	mg/kg	ND	ND	0.1	1175945
Styrene	mg/kg	ND	ND	0.1	1175945
1,1,1,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
Tetrachloroethene	mg/kg	ND	ND	0.1	1175945
Toluene	mg/kg	ND	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	ND	ND	0.1	1175945
1.1.2-trichloroethane	mg/kg	ND	ND	0.1	1175945
Trichloroethene	mg/kg	ND	ND	0.1	1175945
	ing/tg			<u> </u>	L 17 0 0 4 0

JACQUES WHITFORD LTD. Client Project #: 1013548 Site Reference: PINE LAKE/WOOD BUFFALO PARK Sampler Initials: SB

.

Maxxam ID		B76150	B76151		
Sampling Date		2006/06/19	2006/06/19		
COC Number		133604	133604		
	Units	PL-TP2-SA2	PL-TP3-SA1	RDL	QC Batch
		1	r	1	
Trichlorofluoromethane	mg/kg	ND	ND	0.1	1175945
Vinyl chloride	mg/kg	ND	ND	0.1	1175945
Xylenes (Total)	mg/kg	ND	ND	0.1	1175945
m & p-Xylene	mg/kg	ND	ND	0.1	1175945
o-Xylene	mg/kg	ND	ND	0.1	1175945
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	103	105	N/A	1175945
D10-ETHYLBENZENE (sur.)	%	99	100	N/A	1175945
D4-1,2-DICHLOROETHANE (sur.)	%	111	114	N/A	1175945
D8-TOLUENE (sur.)	%	101	102	N/A	1175945
ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit					

VOLATILE ORGANICS BY GC MS (SOIL)

Maxxam ID Sampling Date		B76152 2006/06/19	B76153 2006/06/20	<u> </u>	
COC Number		133604	133604		
	Units	PL-TP4-SA2	PL-MW1-SA6	RDL	QC Batc
Volatiles					
Benzene	mg/kg	N/A	ND	0.04	1175945
Extractable (MeOH) Benzene	mg/kg	ND	N/A	0.04	1175941
Bromodichloromethane	mg/kg	N/A	ND	0.1	1175945
Extractable (MeOH) Toluene	mg/kg	ND .	N/A	0.1	1175941
Bromoform	mg/kg	N/A	ND	0.1	1175945
Extractable (MeOH) Ethylbenzene	mg/kg	ND .	N/A	0.1	1175941
Bromomethane	mg/kg	N/A	ND	0.2	1175945
Extractable (MeOH) m & p-Xylene	mg/kg	ND	N/A	0.1	1175941
Extractable (MeOH) o-Xylene	mg/kg	ND .	N/A	0.1	1175941
Carbon tetrachloride	mg/kg	N/A	ND	0.1	1175945
Chlorobenzene	mg/kg	N/A	ND _	0.1	1175945
Extractable (MeOH) Xylenes (Total)	mg/kg	ND	N/A	0.1	1175941
Chlorodibromomethane	mg/kg	N/A	ND	0.1	1175945
Chloroethane	mg/kg	N/A	ND	0.1	1175945
Chloroform	mg/kg	N/A	ND	0.1	1175948
Chloromethane	mg/kg	N/A	ND	0.2	1175945
1,2-dibromoethane	mg/kg	N/A	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	N/A	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	N/A	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	N/A	ND	0.1	1175945
1,1-dichloroethane	mg/kg	N/A	ND	0.1	1175945
1,2-dichloroethane	mg/kg	N/A	ND	0.1	1175945
1,1-dichloroethene	mg/kg	N/A	ND	0.1	1175945
cis-1,2-dichloroethene	mg/kg	N/A	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	N/A	ND	0.1	1175945
Dichloromethane	mg/kg	N/A	ND	0.1	1175945
1,2-dichloropropane	mg/kg	N/A	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	N/A	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	N/A	ND	0.1	1175945
Ethylbenzene	mg/kg	N/A	ND	0.1	1175945
Styrene	mg/kg	N/A	ND	0.1	1175945
1,1,1,2-tetrachloroethane	mg/kg	N/A	ND	0.1	1175945

N/A = Not Applicable RDL = Reportable Detection Limit

Maxxam ID		B76152	B76153		
Sampling Date	<u> </u>	2006/06/19	2006/06/20		
COC Number		133604	133604		
	Units	PL-TP4-SA2	PL-MW1-SA6	RDL	QC Batch
1,1,2,2-tetrachloroethane	mg/kg	N/A	ND	0.1	1175945
Tetrachloroethene	mg/kg	N/A	ND	0.1	1175945
Toluene	mg/kg	N/A	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	N/A	ND	0.1	1175945
1,1,2-trichloroethane	mg/kg	N/A	ND	0.1	1175945
Trichloroethene	mg/kg	N/A	ND	0.1	1175945
Trichlorofluoromethane	mg/kg	N/A	ND	0.1	1175945
Vinyl chloride	mg/kg	N/A	ND	0.1	1175945
Xylenes (Total)	mg/kg	N/A	ND	0.1	1175945
m & p-Xylene	mg/kg	N/A	ND	0.1	1175945
o-Xylene	mg/kg	N/A	ND	0.1	1175945
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	N/A	101	N/A	1175945
Extractable (MeOH) 4-BROMOFLUOROBENZENE (sur.)	%	102	N/A	N/A	1175941
D10-ETHYLBENZENE (sur.)	%	N/A	103	N/A	1175945
Extractable (MeOH) D10-ETHYLBENZENE (sur.)	%	97	N/A	N/A	1175941
D4-1,2-DICHLOROETHANE (sur.)	%	N/A	110	N/A	1175945
Extractable (MeOH) D4-1,2-DICHLOROETHANE (sur.)	%	129	N/A	N/A	1175941
D8-TOLUENE (sur.)	%	N/A	100	N/A	1175945
Extractable (MeOH) D8-TOLUENE (sur.)	%	99	N/A	N/A	1175941
ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit					

Maxxam ID Sampling Date	· · · · · · · · · · · · · · · · · · ·	B76154 2006/06/20	B76155 2006/06/20		
COC Number		133604	133604		
	Units		PL-MW3-SA1	RDL	QC Batch
Volatiles				•	
Benzene	mg/kg	ND	ND	0.04	1175945
Bromodichloromethane	mg/kg	ND	ND	0.1	1175945
Bromoform	mg/kg	ND	ND	0.1	1175945
Bromomethane	mg/kg	ND	ND	0.2	1175945
Carbon tetrachloride	mg/kg	ND	ND	0.1	1175945
Chlorobenzene	mg/kg	ND	ND	0.1	1175945
Chlorodibromomethane	mg/kg	ND	ND	0.1	1175945
Chloroethane	mg/kg	ND	ND	0.1	1175945
Chloroform	mg/kg	ND	ND	0.1	1175945
Chloromethane	mg/kg	ND	ND	0.2	1175945
1,2-dibromoethane	mg/kg	ND	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloroethane	.mg/kg	ND	ND	0.1	1175945
1,1-dichloroethene	mg/kg	ND	ND	0.1	1175945
cis-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
Dichloromethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloropropane	mg/kg	ND	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
Ethylbenzene	mg/kg	ND	ND	0.1	1175945
Styrene	mg/kg	ND	ND	0.1	1 1 75945
1,1,1,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
Tetrachloroethene	mg/kg	ND	ND	0.1	1175945
Toluene	mg/kg	ND	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2-trichloroethane	mg/kg	ND	ND	0.1	1175945
Trichloroethene	mg/kg	ND	ND	0.1	1175945

VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		B76154	B76155		
Sampling Date		2006/06/20	2006/06/20		
COC Number		133604	133604		
	Units	PL-MW2-SA2	PL-MW3-SA1	RDL	QC Batch
Trichlorofluoromethane	mg/kg	ND	ND	0.1	1175945
Vinyl chloride	mg/kg	ND	ND	0.1	1175945
Xylenes (Total)	mg/kg	ND	ND	0.1	1175945
m & p-Xylene	mg/kg	ND	ND	0.1	1175945
o-Xylene	mg/kg	ND	ND	0.1	1175945
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	103	105	N/A	1175945
D10-ETHYLBENZENE (sur.)	%	102	101	N/A	1175945
D4-1,2-DICHLOROETHANE (sur.)	%	111	113	N/A	1175945
D8-TOLUENE (sur.)	%	102	102	N/A	1175945
ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit					

,

Maxxam ID		B76171	B76173		
Sampling Date		2006/06/22 133604	2006/06/22 133604		<u> </u>
	Units	PC-MW1-SA5		RDL	QC Batch
			r	1	1
Volatiles				ļ	
Benzene	mg/kg	0.13	ND	0.04	1175945
Bromodichloromethane	mg/kg	ND	ND	0.1	1175945
Bromoform	mg/kg	ND	ND	0.1	1175945
Bromomethane	mg/kg	ND	ND	0.2	1175945
Carbon tetrachloride	mg/kg	ND	ND	0.1	1175945
Chlorobenzene	mg/kg	ND	ND	0.1	1175945
Chlorodibromomethane	mg/kg	ND	ND	0.1	1175945
Chloroethane	mg/kg	ND	ND	0.1	1175945
Chloroform	mg/kg	ND	ND	0.1	1175945
Chloromethane	mg/kg	ND	ND	0.2	1175945
1,2-dibromoethane	mg/kg	ND	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloroethane	mg/kg	ND	ND	0.1	1175945
1,1-dichloroethene	mg/kg	ND	NÐ	0.1	1175945
cis-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	ND	ND	0.1	1175945
Dichloromethane	mg/kg	ND	ND	0.1	1175945
1,2-dichloropropane	mg/kg	ND	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	ND	ND	0.1	1175945
Ethylbenzene	mg/kg	ND	ND	0.1	1175945
Styrene	mg/kg	ND	ND	0.1	1175945
1,1,1,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2,2-tetrachloroethane	mg/kg	ND	ND	0.1	1175945
Tetrachloroethene	mg/kg	ND	ND	0.1	1175945
Toluene	mg/kg	ND	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	ND	ND	0.1	1175945
1,1,2-trichloroethane	mg/kg	ND	ND	0.1	1175945
Trichloroethene	mg/kg	ND	ND	0.1	1175945
ND ≃ Not detected RDL = Reportable Detection Limit				-	-

Maxxam ID		B76171	B76173		
Sampling Date		2006/06/22	2006/06/22		
COC Number		133604	133604		
	Units	PC-MW1-SA5	PC-BH2-SA5	RDL	QC Batch
Trichlorofluoromethane	mg/kg	ND	ND	0.1	1175945
Vinyl chloride	mg/kg	ND	ND	0.1	1175945
Xylenes (Total)	mg/kg	ND	ND	0.1	1175945
m & p-Xylene	mg/kg	ND	ND	0.1	1175945
o-Xylene	mg/kg	ND	ND	0.1	1175945
Surrogate Recovery (%)					
4-BROMOFLUOROBENZENE (sur.)	%	102	102	N/A	1175945
D10-ETHYLBENZENE (sur.)	%	101	102	N/A	1175945
D4-1,2-DICHLOROETHANE (sur.)	%	111	114	N/A	1175945
D8-TOLUENE (sur.)	%	102	100	N/A	1175945
D8-TOLUENE (sur.) ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit	%	102	100	N/A	

Maxxam ID Sampling Date		B76174 2006/06/22		
COC Number		133604		
	Units	PC-MW3-SA5	RDL	QC Batch
Volatiles				
Benzene	mg/kg	ND	0.04	1175945
Bromodichloromethane	mg/kg	ND	0.1	1175945
Bromoform	mg/kg	ND	0.1	1175945
Bromomethane	mg/kg	ND	0.2	1175945
Carbon tetrachloride	mg/kg	ND	0.1	1175945
Chlorobenzene	mg/kg	ND	0.1	1175945
Chlorodibromomethane	mg/kg	ND	0.1	1175945
Chloroethane	mg/kg	ND	0.1	1175945
Chloroform	mg/kg	ND	0.1	1175945
Chloromethane	mg/kg	ND	0.2	1175945
1,2-dibromoethane	mg/kg	ND	0.1	1175945
1,2-dichlorobenzene	mg/kg	ND	0.1	1175945
1,3-dichlorobenzene	mg/kg	ND	0.1	1175945
1,4-dichlorobenzene	mg/kg	ND	0.1	1175945
1,1-dichloroethane	mg/kg	ND	0.1	1175945
1,2-dichloroethane	mg/kg	ND	0.1	1175945
1,1-dichloroethene	mg/kg	ND	0.1	1175945
cis-1,2-dichloroethene	mg/kg	ND	0.1	1175945
trans-1,2-dichloroethene	mg/kg	ND	0.1	1175945
Dichloromethane	mg/kg	ND	0.1	1175945
1,2-dichloropropane	mg/kg	ND	0.1	1175945
cis-1,3-dichloropropene	mg/kg	ND	0.1	1175945
trans-1,3-dichloropropene	mg/kg	ND	0.1	1175945
Ethylbenzene	mg/kg	ND	0.1	1175945
Styrene	mg/kg	ND	0.1	1175945
1,1,1,2-tetrachloroethane	mg/kg	ND	0.1	1175945
1,1,2,2-tetrachloroethane	mg/kg	ND	0.1	1175945
Tetrachloroethene	mg/kg	ND	0.1	1175945
Toluene	mg/kg	ND	0.1	1175945
1,1,1-trichloroethane	mg/kg	ND	0.1	1175945
1,1,2-trichloroethane	mg/kg	ND	0.1	1175945
Trichloroethene	mg/kg	ND	0.1	1175945

VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID	·	B76174		
Sampling Date		2006/06/22		
COC Number		133604	ļ	
	Units	PC-MW3-SA5	RDL	QC Batch
Trichlorofluoromethane	mg/kg	ND	0.1	1175945
Vinyt chloride	mg/kg	ND	0.1	1175945
Xylenes (Total)	mg/kg	ND	0.1	1175945
m & p-Xylene	mg/kg	ND	0.1	1175945
o-Xylene	mg/kg	ND	0.1	1175945
Surrogate Recovery (%)				
4-BROMOFLUOROBENZENE (sur.)	%	102	N/A	1175945
D10-ETHYLBENZENE (sur.)	%	101	N/A	1175945
D4-1,2-DICHLOROETHANE (sur.)	%	110	N/A	1175945
D8-TOLUENE (sur.)	%	103	N/A	1175945
ND = Not detected N/A = Not Applicable RDL = Reportable Detection Limit		· .		<u></u>

.

RESULTS OF CHEMICAL ANALYSES OF SOIL Comments

Hydrocarbon by IR (Mineral oil & grease): FTIR results are based on a wet weight for solids.

Results relate only to the items tested.

Quality Assurance Report

Maxxam Job Number: EA626999

QA/QC			Date			
Batch	00 T	Deservation	Analyzed	Malua Daasuaa	11	00.11-11
Num Init 1175941 LM4	QC Type MATRIX SPIKE	Parameter Extractable (MeOH) 4-BROMOFLUOROBEN	yyyy/mm/dd	Value Recovery 101	Units	<u>QC Limit</u> 60 - 14
1173941 LIM4	MAIRIASPIRE	Extractable (MeOH) 4-BROMOFLOOROBEN Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27 2006/06/27	100	% %	60 - 14
			2006/06/27	125		60 - 13
		Extractable (MeOH) D4-1,2-DICHLOROETH Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27	100	% %	60 - 14 60 - 14
		Extractable (MeOH) Benzene	2006/06/27	90	%	60 - 14
		Extractable (MeOH) Toluene	2006/06/27	90	%	60 - 14 60 - 14
		Extractable (MeOH) Ethylbenzene	2006/06/27	52 86	%	60 - 14
		Extractable (MeOH) m & p-Xylene	2006/06/27	85	%	60 - 14
		Extractable (MeOH) o-Xylene	2006/06/27	81	%	60 - 14
	SPIKE	Extractable (MeOH) 4-BROMOFLUOROBEN	2006/06/27	104	%	60 - 14
	of Inc	Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27	. 97	%	60 - 13
		Extractable (MeOH) D4-1,2-DICHLOROETH	2006/06/27	123	%	60 - 14
		Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27	100	%	60 - 14
		Extractable (MeOH) Benzene	2006/06/27	93	%	60 - 14
		Extractable (MeOH) Toluene	2006/06/27	90	%	60 - 14
		Extractable (MeOH) Ethylbenzene	2006/06/27	87	%	60 - 14
BLANK		Extractable (MeOH) m & p-Xylene	2006/06/27	84	%	60 - 14
		Extractable (MeOH) o-Xylene	2006/06/27	73	%	60 - 14
	BLANK	Extractable (MeOH) 4-BROMOFLUOROBEN	2006/06/27	102	%	60 - 14
		Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27	96	%	60 - 13
		Extractable (MeOH) D4-1,2-DICHLOROETH	2006/06/27	130	%	60 - 14
		Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27	100	%	60 - 14
		Extractable (MeOH) Benzene	2006/06/27	ND, RDL=0.04	/o mg/kg	00-1-
		Extractable (MeOH) Toluene	2006/06/27	ND, RDL=0.04	mg/kg	
		Extractable (MeOH) Ethylbenzene	2006/06/27	ND, RDL=0.1	mg/kg	
		Extractable (MeOH) m & p-Xylene	2006/06/27	ND, RDL=0.1	mg/kg	
		Extractable (MeOH) o-Xylene	2006/06/27	ND, RDL=0.1	mg/kg	
		Extractable (MeOH) 3-Aylenes (Total)	2006/06/27	ND, RDL=0.1		
	RPD	, , , , , ,	2006/06/27	NC NC	mg/kg	,
	RFU	Extractable (MeOH) Benzene			%	Ę
		Extractable (MeOH) Toluene	2006/06/27	NC	%	5
		Extractable (MeOH) Ethylbenzene	2006/06/27	NC	%	5
		Extractable (MeOH) m & p-Xylene	2006/06/27	NC	%	5
		Extractable (MeOH) o-Xylene	2006/06/27	NC	%	ŧ
475040 KO		Extractable (MeOH) Xylenes (Total)	2006/06/27	NC	%	5
175942 KO	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/27	95	%	60 - 13
	ODIVE	F1 (C06-C10)	2006/06/27	93	%	60 - 13
	SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/27	96	%	60 - 13
		F1 (C06-C10)	2006/06/27	104	%	80 - 12
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/06/27	88	%	60 - 13
	RPD	F1 (C06-C10)	2006/06/27	ND, RDL=10	mg/kg	-
1175042 + MA	MATRIX SPIKE	F1 (C06-C10)	2006/06/27	NC	%	5
1175943 LM4		Extractable (MeOH) 4-BROMOFLUOROBEN	2006/06/27	101	0/	60 44
	[B76164-01]		2006/06/27	101	%	60 - 14
		Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27	115	%	60 - 13
		Extractable (MeOH) D4-1,2-DICHLOROETH Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27	92	%	60 - 14
		, , , , ,	2006/06/27	101	%	60 - 14
		Extractable (MeOH) Benzene	2006/06/27	106	%	60 - 14
		Extractable (MeOH) Toluene	2006/06/27	98	%	60 - 14
		Extractable (MeOH) Ethylbenzene	2006/06/27	104	%	60 - 14
		Extractable (MeOH) m & p-Xylene	2006/06/27	103	%	60 - 14
		Extractable (MeOH) o-Xylene	2006/06/27	100	%	60 - 14
	SPIKE	Extractable (MeOH) 4-BROMOFLUOROBEN	2006/06/27	103	%	60 - 14
		Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27	108	%	60 - 13
		Extractable (MeOH) D4-1,2-DICHLOROETH	2006/06/27	90	%	60 - 14
		Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27	101	%	60 - 14
		Extractable (MeOH) Benzene	2006/06/27	101	%	60 - 14

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 detphone(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date				
Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value	Recovery	Units	QC Limit
1175943 LM4	SPIKE	Extractable (MeOH) Toluene	2006/06/27	Value	98	%	60 - 140
1110040 2004	OF INC	Extractable (MeOH) Ethylbenzene	2006/06/27		95	%	60 - 140
		Extractable (MeOH) m & p-Xylene	2006/06/27		95 95	%	60 - 140
						%	
		Extractable (MeOH) o-Xylene	2006/06/27		92		60 - 140
	BLANK	Extractable (MeOH) 4-BROMOFLUOROBEN	2006/06/27		105	%	60 - 140
		Extractable (MeOH) D10-ETHYLBENZENE (2006/06/27		123	%	60 - 130
		Extractable (MeOH) D4-1,2-DICHLOROETH	2006/06/27		90	%	60 - 140
		Extractable (MeOH) D8-TOLUENE (sur.)	2006/06/27		115	%	60 - 14
		Extractable (MeOH) Benzene	2006/06/27		DL=0.04	mg/kg	
		Extractable (MeOH) Toluene	2006/06/27	ND, RI		mg/kg	
		Extractable (MeOH) Ethylbenzene	2006/06/27	ND, RI	DL=0.1	mg/kg	
		Extractable (MeOH) m & p-Xylene	2006/06/27	ND, RI	DL=0.1	mg/kg	
		Extractable (MeOH) o-Xylene	2006/06/27	ND, RI	DL=0.1	mg/kg	
		Extractable (MeOH) Xylenes (Total)	2006/06/27	ND, RI	DL=0.1	mg/kg	
	RPD [B76163-01]	Extractable (MeOH) Benzene	2006/06/27	NC		%	5
		Extractable (MeOH) Toluene	2006/06/27	NC		%	5
		Extractable (MeOH) Ethylbenzene	2006/06/27	NC		%	5
		Extractable (MeOH) m & p-Xylene	2006/06/27	NC		%	5
		Extractable (MeOH) o-Xylene	2006/06/27	NC		%	5
		Extractable (MeOH) Xylenes (Total)	2006/06/27	NC		%	5
1175944 MA	MATRIX SPIKE		2000/00/21	110		70	0
1110044 1023	[B76164-01]	4-BROMOFLUOROBENZENE (sur.)	2006/06/28		78	%	60 - 13
	[0/0104-01]	F1 (C06-C10)	2006/06/28		91	%	
	SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/28				60 - 13
	SFIRE				80	%	60 - 13
	DI ANIIZ	F1 (C06-C10)	2006/06/28		97	%	80 - 12
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/06/28		85	%	60 - 13
		F1 (C06-C10)	2006/06/28	ND, RE	DL=10	mg/kg	
1175945 LM4	RPD [B76163-01] MATRIX SPIKE	F1 (C06-C10)	2006/06/28	NC		%	5
	[B76150-01]	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		105	%	60 - 14
		D10-ETHYLBENZENE (sur.)	2006/06/27		97	%	60 - 14
		D4-1,2-DICHLOROETHANE (sur.)	2006/06/27		114	%	60 - 14
		D8-TOLUENE (sur.)	2006/06/27		99	%	60 - 14
		Benzene	2006/06/27		95	%	60 - 14
		Bromodichloromethane	2006/06/27		93	%	60 - 14
		Bromoform	2006/06/27		82	%	60 - 14
		Bromomethane	2006/06/27		82	%	
		Carbon tetrachloride					60 - 14
			2006/06/27		74	%	60 - 1 4
		Chlorobenzene	2006/06/27		90	%	60 - 14
		Chlorodibromomethane	2006/06/27		79	%	60 - 14
		Chloroethane	2006/06/27		92	%	60 - 14
		Chloroform	2006/06/27		100	%	60 - 14
		Chloromethane	2006/06/27		87	%	60 - 14
		1,2-dibromoethane	2006/06/27		94	%	60 - 14
		1,2-dichlorobenzene	2006/06/27		92	%	60 - 14
		1,3-dichlorobenzene	2006/06/27		85	%	60 - 14
		1,4-dichlorobenzene	2006/06/27		93	%	60 - 14
		1,1-dichloroethane	2006/06/27		102	%	60 - 14
		1,2-dichloroethane	2006/06/27		106	%	60 - 14
		1,1-dichloroethene	2006/06/27		100	%	60 - 14
		cis-1.2-dichloroethene	2006/06/27		100	%	60 - 14 60 - 14
		trans-1,2-dichloroethene	2006/06/27		98	%	
		Dichloromethane					60 - 14
			2006/06/27		101	%	60 - 14
		1,2-dichloropropane	2006/06/27		89	%	60 - 14
		cis-1,3-dichloropropene	2006/06/27		81	%	60 - 14
		trans-1.3-dichloropropene	2006/06/27		82	%	60 - 14

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5Ragetet 6(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Lim
175945 LM4	MATRIX SPIKE						
	[B76150-01]	Ethylbenzene	2006/06/27		86	%	60 - 14
		Styrene	2006/06/27		80	%	60 - 1/
		1,1,1,2-tetrachloroethane	2006/06/27		83	%	60 - 14
		1,1,2,2-tetrachloroethane	2006/06/27		92	%	60 - 1
		Tetrachloroethene	2006/06/27		83	%	60 - 1
		Toluene	2006/06/27		87	%	60 - 1
		1,1,1-trichloroethane	2006/06/27		95	%	60 - 1
		1,1,2-trichloroethane	2006/06/27		98	%	60 - 1
		Trichloroethene	2006/06/27		92	%	60 - 1
		Trichlorofluoromethane	2006/06/27		98	%	60 - 1
		Vinyl chloride	2006/06/27		90 83	%	
		•	2006/06/27				60 - 1
		m & p-Xylene			87	%	60 - 1
	000		2006/06/27		87	%	60 - 1
SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		99	%	60 - 1	
		D10-ETHYLBENZENE (sur.)	2006/06/27		95	%	60 - 1
		D4-1,2-DICHLOROETHANE (sur.)	2006/06/27		116	%	60 - 1
		D8-TOLUENE (sur.)	2006/06/27		94	%	60 - 1
		Benzene	2006/06/27		91	%	60 - 1
		Bromodichloromethane	2006/06/27		94	%	60 - 1
		Bromoform	2006/06/27		91	%	60 - 1
		Bromomethane	2006/06/27		73	%	60 - 1
		Carbon tetrachloride	2006/06/27		71	%	60 - 1
		Chlorobenzene	2006/06/27		88	%	60 - 1
		Chlorodibromomethane	2006/06/27		85	%	60 - 1
		Chloroethane					
			2006/06/27		90	%	60 - 1
		Chloroform	2006/06/27		. 97	%	60 - 1
		Chloromethane	2006/06/27		86	%	60 - 1
		1,2-dibromoethane	2006/06/27		102	%	60 - 1
		1,2-dichlorobenzene	2006/06/27		95	%	60 - 1
		1,3-dichlorobenzene	2006/06/27		89	%	60 - 1
		1,4-dichlorobenzene	2006/06/27		89	%	60 - 1
		1,1-dichloroethane	2006/06/27		94	%	60 - 1
		1,2-dichloroethane	2006/06/27		105	%	60 - 1
		1,1-dichloroethene	2006/06/27		94	%	60 - 1
		cis-1,2-dichloroethene	2006/06/27		97	%	60 - 1
		trans-1,2-dichloroethene	2006/06/27		92	%	60 - 1
		Dichloromethane	2006/06/27		98	%	60 - 1
		1,2-dichloropropane	2006/06/27		94	%	60 - 1
		cis-1,3-dichloropropene	2006/06/27		87	%	60 - 1
		trans-1,3-dichloropropene	2006/06/27		87	%	60 - 1
		Ethylbenzene	2006/06/27		84	%	60 - 1
		Styrene	2006/06/27		86	%	60 - 1
		1,1,1,2-tetrachloroethane	2006/06/27		85	%	60 - 1
		1,1,2,2-tetrachloroethane	2006/06/27		105	%	60 - 1
		Tetrachloroethene	2006/06/27		81	%	60 - 1
		Тојџеле	2006/06/27		83	%	60 - 1
		1,1,1-trichloroethane	2006/06/27		93	%	60 - 1
		1,1,2-trichloroethane	2006/06/27		100	%	60 - 1
		Trichloroethene	2006/06/27		91	%	60 - 1
		Trichlorofluoromethane	2006/06/27		93	%	60 - 1
		Vinvl chloride					
			2006/06/27		61	%	60 - 1
		m & p-Xylene	2006/06/27		85	%	60 - 1
		o-Xylene	2006/06/27		87	%	60 - 1
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		99	%	60 - 1
		D10-ETHYLBENZENE (sur.)	2006/06/27		103	%	60 - 1

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed				
	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limit
	BLANK	D4-1,2-DICHLOROETHANE (sur.)	2006/06/27	value	114	%	60 - 14
		D8-TOLUENE (sur.)	2006/06/27		100	%	60 - 14
		Benzene	2006/06/27	ND R	DL=0.04	mg/kg	
		Bromodichloromethane	2006/06/27		DL=0.1	mg/kg	
		Bromoform	2006/06/27		DL=0.1	mg/kg	
		Bromomethane	2006/06/27		DL=0.1	mg/kg	
		Carbon tetrachloride	2006/06/27		DL=0.2 DL=0.1	mg/kg	
		Chlorobenzene	2006/06/27		DL=0.1 DL=0.1		
		Chlorodibromomethane	2006/06/27		DL=0.1 DL=0.1	mg/kg	
			2006/06/27			mg/kg	
	Chloroethane			DL=0.1	mg/kg		
		Chloroform	2006/06/27		DL=0.1	mg/kg	
		Chloromethane	2006/06/27		DL=0.2	mg/kg	
		1,2-dibromoethane	2006/06/27		DL=0.1	mg/kg	
		1,2-dichlorobenzene	2006/06/27		DL=0.1	mg/kg	
		1,3-dichlorobenzene	2006/06/27		DL=0.1	mg/kg	
		1,4-dichlorobenzene	2006/06/27		DL=0.1	mg/kg	
		1,1-dichloroethane	2006/06/27		DL=0.1	mg/kg	
		1,2-dichloroethane	2006/06/27	ND, R	DL=0.1	mg/kg	
	1,1-dichloroethene	2006/06/27	ND, R	DL=0.1	mg/kg		
		cis-1,2-dichloroethene	2006/06/27	ND, R	DL=0.1	mg/kg	
	trans-1,2-dichloroethene	2006/06/27	ND, R	DL=0.1	mg/kg		
		Dichloromethane	2006/06/27	ND, R	DL=0.1	mg/kg	
		1,2-dichloropropane	2006/06/27	ND, R	DL=0.1	mg/kg	
		cis-1,3-dichloropropene	2006/06/27	ND, R	DL=0.1	mg/kg	
		trans-1,3-dichloropropene	2006/06/27	ND. R	DL=0.1	mg/kg	
		Ethylbenzene	2006/06/27		DL=0.1	mg/kg	
		Styrene	2006/06/27	,	DL=0.1	mg/kg	
		1,1,1,2-tetrachloroethane	2006/06/27		DL=0.1	mg/kg	
		1,1,2,2-tetrachioroethane	2006/06/27		DL=0.1	mg/kg	
		Tetrachloroethene	2006/06/27		DL=0.1	mg/kg	
		Toluene	2006/06/27		DL=0.1	mg/kg	
					DL=0.1		
		1,1,1-trichloroethane	2006/06/27			mg/kg	
		1,1,2-trichloroethane	2006/06/27		DL=0.1	mg/kg	
		Trichloroethene	2006/06/27		DL=0.1	mg/kg	
		Trichlorofluoromethane	2006/06/27		DL=0.1	mg/kg	
		Vinyl chloride	2006/06/27		DL=0.1	mg/kg	
		Xylenes (Total)	2006/06/27		DL=0.1	mg/kg	
		m & p-Xylene	2006/06/27		DL=0.1	mg/kg	
		o-Xylene	2006/06/27		DL=0.1	mg/kg	
E	RPD [B76147-01]	Benzene	2006/06/27	NC		%	Ę
		Bromodichloromethane	2006/06/27	NC		%	5
		Bromoform	2006/06/27	NC		%	ŧ
		Bromomethane	2006/06/27	NC		%	ŧ
		Carbon tetrachloride	2006/06/27	NC		%	
		Chlorobenzene	2006/06/27	NC		%	:
		Chlorodibromomethane	2006/06/27	NC		%	:
		Chloroethane	2006/06/27	NC		%	:
		Chloroform	2006/06/27	NC		%	
		Chloromethane	2006/06/27	NC		%	
		1,2-dibromoethane	2006/06/27	NC		%	
		1.2-dichlorobenzene	2006/06/27	NC		%	
		1,3-dichlorobenzene	2006/06/27	NC		%	
		•					1
		1.4-dichlorobenzene	2006/06/27	NC		%	
		1,1-dichloroethane	2006/06/27	NC		%	
		1,2-dichloroethane	2006/06/27	NC		%	5
	1,1-dichloroethene	2006/06/27	NC		%		

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R3 Gette horde(780) 465-1212 FAX(780) 450-4187

-

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1175945 LM4	RPD [B76147-01]	cis-1,2-dichloroethene	2006/06/27	NC	recovery	%	50
		trans-1,2-dichloroethene	2006/06/27	NC		%	50
		Dichloromethane	2006/06/27	NC		%	50
		1,2-dichloropropane	2006/06/27	NC		%	50
		cis-1,3-dichloropropene	2006/06/27	NC		%	50
		· · ·				%	
		trans-1,3-dichloropropene	2006/06/27	NC			50
		Ethylbenzene	2006/06/27	NC		%	50
		Styrene	2006/06/27	NC		%	50
		1,1,1,2-tetrachloroethane	2006/06/27	NC		%	5
		1,1,2,2-tetrachloroethane	2006/06/27	NC		%	5
		Tetrachloroethene	2006/06/27	NC		%	5
		Toluene	2006/06/27	NC		%	5
		1,1,1-trichloroethane	2006/06/27	NC		%	5
		1,1,2-trichloroethane	2006/06/27	NC		%	5
		Trichloroethene	2006/06/27	NC		%	5
		Trichlorofluoromethane	2006/06/27	NC		%	5
		Vinyl chloride	2006/06/27	NC		%	5
		Xylenes (Total)	2006/06/27	NC		%	5
		m & p-Xylene	2006/06/27	NC		%	5
		o-Xylene	2006/06/27	NC		%	5
176320 KB4	MATRIX SPIKE	D10-ANTHRACENE (sur.)	2006/06/28		112	%	30 - 13
TTT0520 RB4 MATRIX SFIRE		D12-BENZO(A)PYRENE (sur.)	2006/06/28		122	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/06/28		81	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/06/28		121	%	30 - 13
		Naphthalene	2006/06/28		102	%	30 - 13
		•			49	%	
		2-Methylnaphthalene	2006/06/28				30 - 13 30 - 13
		Acenaphthylene	2006/06/28		91	%	••••
		Acenaphthene	2006/06/28		99	%	30 - 13
		Fluorene	2006/06/28		79	%	30 - 13
		Phenanthrene	2006/06/28		-50 (1)	%	30 - 13
		Anthracene	2006/06/28		60	%	30 - 13
		Fluoranthene	2006/06/28		98	%	30 - 13
		Pyrene	2006/06/28		67	%	30 - 13
		Benzo(a)anthracene	2006/06/28		103	%	30 - 13
		Chrysene	2006/06/28		-250 (1)	%	30 - 13
		Benzo(b&j)fluoranthene	2006/06/28		55	%	30 - 13
		Benzo(k)fluoranthene	2006/06/28		71	%	30 - 13
		Benzo(a)pyrene	2006/06/28		42	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/06/28		34	%	30 - 13
		Dibenz(a,h)anthracene	2006/06/28		41	%	30 - 13
		Benzo(g,h,i)perylene	2006/06/28		11 (1)	%	30 - 13
	SPIKE	D10-ANTHRACENE (sur.)	2006/06/28		96	%	30 - 13
		D12-BENZO(A)PYRENE (sur.)	2006/06/28		91	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/06/28		44	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/06/28		101	%	30 - 13
		Naphthalene	2006/06/28		72	%	30 - 13
		2-Methylnaphthalene	2006/06/28		73	%	30 - 13
		Acenaphthylene	2006/06/28		64	%	30 - 13
		Acenaphthene	2006/06/28		72	%	30 - 13
		Fluorene	2006/06/28		74	%	30 - 13
		Phenanthrene	2006/06/28		77	%	30 - 13
		Anthracene	2006/06/28		75	%	30 - 13
		Fluoranthene	2006/06/28		78	%	30 - 13
	1	Pyrene	2006/06/28		76	%	30 - 13
		Benzo(a)anthracene	2006/06/28		79	%	30 - 13
		Chrysene	2006/06/28		73	%	30 - 13
		•				••	

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E **5**R2gelephore(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1176320 KB4	SPIKE	Benzo(b&i)fluoranthene	2006/06/28	77	%	30 - 13
11100201101		Benzo(k)fluoranthene	2006/06/28	73	%	30 - 13
		Benzo(a)pyrene	2006/06/28	65	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/06/28	66	%	30 - 13
		Dibenz(a,h)anthracene	2006/06/28	75	%	
						30 - 13
		Benzo(g,h,i)perylene	2006/06/28	66	%	30 - 13
	BLANK	D10-ANTHRACENE (sur.)	2006/06/28	90	%	30 - 13
		D12-BENZO(A)PYRENE (sur.)	2006/06/28	85	%	30 - 13
		D8-ACENAPHTHYLENE (sur.)	2006/06/28	42	%	30 - 13
		TERPHENYL-D14 (sur.)	2006/06/28	103	%	30 - 13
		Naphthalene	2006/06/28	ND, RDL=0.05	mg/kg	
		2-Methylnaphthalene	2006/06/28	ND, RDL=0.05	mg/kg	
		Acenaphthylene	2006/06/28	ND, RDL=0.05	mg/kg	
		Acenaphthene	2006/06/28	ND, RDL=0.05	mg/kg	
		Fluorene	2006/06/28	ND, RDL=0.05	mg/kg	
		Phenanthrene	2006/06/28	ND, RDL=0.05	mg/kg	
		Anthracene	2006/06/28	ND, RDL=0.05	mg/kg	
		Fluoranthene	2006/06/28	ND, RDL=0.05	mg/kg	
		Pyrene	2006/06/28	ND, RDL=0.05	mg/kg	
		Benzo(a)anthracene	2006/06/28	ND, RDL=0.05	mg/kg	
		Chrysene	2006/06/28	ND, RDL=0.05	mg/kg	
		Benzo(b&j)fluoranthene	2006/06/28	ND, RDL=0.05	mg/kg	
		Benzo(k)fluoranthene	2006/06/28	ND, RDL=0.05	mg/kg	
		Benzo(a)pyrene	2006/06/28	ND, RDL=0.05		
					mg/kg	
		Indeno(1,2,3-cd)pyrene	2006/06/28	ND, RDL=0.05	mg/kg	
		Dibenz(a,h)anthracene	2006/06/28	ND, RDL=0.05	mg/kg	
		Benzo(g,h,i)peryiene	2006/06/28	ND, RDL=0.05	mg/kg	
	RPD	Naphthalene	2006/06/28	NC	%	5
		2-Methylnaphthalene	2006/06/28	26.1	%	5
		Acenaphthylene	2006/06/28	NC	%	5
		Acenaphthene	2006/06/28	NC	%	5
		Fluorene	2006/06/28	NC	%	5
		Phenanthrene	2006/06/28	21.3	%	5
		Anthracene	2006/06/28	6.6	%	5
		Fluoranthene	2006/06/28	NC	%	5
		Pyrene	2006/06/28	9.9	%	5
		Benzo(a)anthracene	2006/06/28	10.7	%	5
		Chrysene	2006/06/28	5.6	%	5
		Benzo(b&j)fluoranthene	2006/06/28	0.07	%	5
		Benzo(k)fluoranthene	2006/06/28	11.6	%	5
		Benzo(a)pyrene	2006/06/28	1.4	%	5
		Indeno(1,2,3-cd)pyrene	2006/06/28	3.0	%	5
		Dibenz(a,h)anthracene	2006/06/28	18.4	%	5
		Benzo(g,h,i)perylene	2006/06/28	15.6	%	5
176385 CN1	BLANK	Moisture	2006/06/27	ND, RDL=0.3	%	
	RPD [B76147-01]	Moisture	2006/06/27	6.3	%	2
176390 CN1	BLANK	Moisture	2006/06/27	ND, RDL=0.3	%	
	RPD	Moisture	2006/06/27	4.7	%	2
176497 JR1	BLANK	Saturation %	2006/06/26	ND, RDL=1	%	
	RPD	Saturation %	2006/06/26	8.9	%	2
176700 YP1	BLANK	Flash point	2006/06/26	>61, RDL=23	°Ĉ	2
						K 1.
	RPD	Flash point	2006/06/26	NC	%	. N.
176876 YP1	Calibration Check	Soluble (1:1) pH	2006/06/26	100	%	80 - 12
	RPD	Soluble (1:1) pH	2006/06/26	4.6	%	2
176883 LQ	Calibration Check	Extractable (Water) Ethylene Glycol	2006/06/27	119	%	80 - 12
		Extractable (Water) Diethylene Glycol	2006/06/27	101	%	80 - 12

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Jetphote(780) 465-1212 FAX(780) 450-4187

.

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Botob			Date			
Batch Num Init	QC Type	Parameter	Analyzed yyyy/mm/dd	Value Recovery	Units	QC Limit
1176883 LQ	Calibration Check	Extractable (Water) Triethylene Glycol	2006/06/27	value Recovery 81	0/its	0C Limit 80 - 120
1170003 LQ	Calibration Check	Extractable (Water) Themylene Glycol	2006/06/27			
		Extractable (Water) Propylene Glycol	2006/06/27	82	%	80 - 120
	MATRIX SPIKE	Extractable (Water) SULFOLANE (sur.)		107 99	%	80 - 120
	MATRIA SFIRE		2006/06/27		%	48 - 12: 30 - 13(
		Extractable (Water) Ethylene Glycol	2006/06/27	122	%	••
		Extractable (Water) Diethylene Glycol	2006/06/27	103	%	30 - 130
		Extractable (Water) Triethylene Glycol	2006/06/27	96	%	30 - 13
		Extractable (Water) Tetraethylene Glycol	2006/06/27	91	%	30 - 13
	001/2	Extractable (Water) Propylene Glycol	2006/06/27	108	%	30 - 13
	SPIKE	Extractable (Water) SULFOLANE (sur.)	2006/06/27	99	%	48 - 12
		Extractable (Water) Ethylene Glycol	2006/06/27	117	%	30 - 13
		Extractable (Water) Diethylene Glycol	2006/06/27	99	%	30 - 13
		Extractable (Water) Triethylene Glycol	2006/06/27	85	%	30 - 13
		Extractable (Water) Tetraethylene Glycol	2006/06/27	74	%	30 - 13
		Extractable (Water) Propylene Glycol	2006/06/27	106	%	30 - 13
	BLANK	Extractable (Water) SULFOLANE (sur.)	2006/06/27	108	%	48 - 12
		Extractable (Water) Ethylene Glycol	2006/06/27	ND, RDL=2.0	mg/kg	
		Extractable (Water) Diethylene Glycol	2006/06/27	ND, RDL=3.0	mg/kg	
		Extractable (Water) Triethylene Glycol	2006/06/27	ND, RDL≃6.1	mg/kg	
		Extractable (Water) Tetraethylene Glycol	2006/06/27	ND, RDL=10	mg/kg	
		Extractable (Water) Propylene Glycol	2006/06/27	ND, RDL=10	mg/kg	
RPD	RPD	Extractable (Water) Ethylene Glycol	2006/06/27	NC	%	4
		Extractable (Water) Diethylene Glycol	2006/06/27	NC	%	4
		Extractable (Water) Triethylene Glycol	2006/06/27	NC	%	4
		Extractable (Water) Tetraethylene Glycol	2006/06/27	NC	%	4
		Extractable (Water) Propylene Glycol	2006/06/27	NC	%	4
1177042 JP2	Calibration Check	Soluble Chloride (CI)	2006/06/26	106	%	80 - 12
1177042 512	MATRIX SPIKE	Soluble Chloride (Cl)	2006/06/26	100	%	75 - 12
	BLANK	· ·				75-12
		Soluble Chloride (Cl)	2006/06/26	ND, RDL=10	mg/L	
4477507 410	RPD	Soluble Chloride (Cl)	2006/06/26	1.5	%	3
1177537 AL2	Calibration Check	Soluble (5:1) Hex. Chromium (Cr 6+)	2006/06/27	101	%	75 - 12
	MATRIX SPIKE	Soluble (5:1) Hex. Chromium (Cr 6+)	2006/06/27	94	%	75 - 12
	BLANK	Soluble (5:1) Hex. Chromium (Cr 6+)	2006/06/27	ND, RDL=0.3	mg/kg	
	RPD	Soluble (5:1) Hex. Chromium (Cr 6+)	2006/06/27	NC	%	3
1177773 YP 1	BLANK	Sieve - #200 (>0.075mm)	2006/06/27	ND, RDL=0.1	%	
		Sieve - <200 Mesh	2006/06/27	ND, RDL=0.1	%	
	RPD	Sieve - #200 (>0.075mm)	2006/06/27	NC	%	4
		Sieve - <200 Mesh	2006/06/27	0.00006	%	4
1177778 YP1	RPD	Free Liquid	2006/06/27	NC	%	2
1177914 AC4	Calibration Check	Total Arsenic (As)	2006/06/28	103	%	80 - 12
		Total Molybdenum (Mo)	2006/06/28	102	%	80 - 12
		Total Selenium (Se)	2006/06/28	101	%	80 - 12
		Total Thallium (TI)	2006/06/28	104	%	80 - 12
		Total Uranium (U)	2006/06/28	104	%	80 - 12
	MATRIX SPIKE	Total Arsenic (As)	2006/06/28	111	%	80 - 12
		Total Selenium (Se)	2006/06/28	111	%	80 - 12
		Total Thallium (TI)	2006/06/28	109	%	80 - 12
	BLANK	Total Arsenic (As)	2006/06/28	ND, RDL=1	mg/kg	50-12
		Total Molybdenum (Mo)	2006/06/28	ND, RDL=0.5	mg/kg	
		Total Selenium (Se)	2006/06/28	ND, RDL=0.5	mg/kg	
		Total Thallium (TI)	2006/06/28	ND, RDL=1	mg/kg	
	000	Total Uranium (U)	2006/06/28	ND, RDL=0.2	mg/kg	-
	RPD	Total Arsenic (As)	2006/06/28	2.7	%	3
		Total Molybdenum (Mo)	2006/06/28	NC	%	3
		Total Selenium (Se)	2006/06/28	NC	%	3
		Total Thailium (TI)	2006/06/28	NC	%	3

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Gette bote (780) 465-1212 FAX(780) 450-4187

,

Maxam

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Red	overv	Units	QC Limi
1177914 AC4	RPD	Total Uranium (U)	2006/06/28	7.8	Overy	%	3
1177915 YY1	Calibration Check	Leachable Mercury (Hg)	2006/06/27		99	%	85 - 11
1177010111	MATRIX SPIKE	Leachable Mercury (Hg)	2006/06/27		100	%	85 - 11
	LEACHATE BLAN	Leachable Mercury (Hg)	2006/06/27	ND, RDL=0.		ug/L	00-1
	RPD			NC	05		
1177924 KO		Leachable Mercury (Hg)	2006/06/27	NG	05	%	
1177924 KQ	MATRIX SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		85	%	60 - 13
			2006/06/27		102	%	60 - 13
•	SPIKE	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		80	%	60 - 13
	D 1 A 11 <i>4</i>	F1 (C06-C10)	2006/06/27		113	%	80 - 12
	BLANK	4-BROMOFLUOROBENZENE (sur.)	2006/06/27		89	%	60 - 13
		F1 (C06-C10)	2006/06/27	ND, RDL=10	כ	mg/kg	
	RPD	F1 (C06-C10)	2006/06/27	7.2		%	5
1178132 KB4	MATRIX SPIKE	O-TERPHENYL (sur.)	2006/06/27		78	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2006/06/27		88	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2006/06/27		83	%	50 - 13
		F4 (C34-C50 Hydrocarbons)	2006/06/27		82	%	50 - 13
	SPIKE	O-TERPHENYL (sur.)	2006/06/27		78	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2006/06/27		83	%	80 - 12
		F3 (C16-C34 Hydrocarbons)	2006/06/27		81	%	80 - 12
		F4 (C34-C50 Hydrocarbons)	2006/06/27		81	%	80 - 12
	BLANK	O-TERPHENYL (sur.)	2006/06/27		61	. %	30 - 13
	DECHIN	F2 (C10-C16 Hydrocarbons)	2006/06/27	ND, RDL=10			50 - 10
		F3 (C16-C34 Hydrocarbons)		-		mg/kg	
			2006/06/27	ND, RDL=10		mg/kg	
		F4 (C34-C50 Hydrocarbons)	2006/06/27	14, RDL=10	1	mg/kg	
		Reached Baseline at C50	2006/06/27	YES, RDL=1		mg/kg	
	RPD	F2 (C10-C16 Hydrocarbons)	2006/06/27	NC		%	ŧ
		F3 (C16-C34 Hydrocarbons)	2006/06/27	NC		%	Ę
		F4 (C34-C50 Hydrocarbons)	2006/06/27	NC		%	5
		Reached Baseline at C50	2006/06/27	NC		%	5
1178141 KB4	MATRIX SPIKE	O-TERPHENYL (sur.)	2006/06/28		87	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2006/06/28		97	%	50 - 13
		F3 (C16-C34 Hydrocarbons)	2006/06/28		87	%	50 - 13
		F4 (C34-C50 Hydrocarbons)	2006/06/28		86	%	50 - 13
	SPIKE	O-TERPHENYL (sur.)	2006/06/28		79	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2006/06/28		87	%	80 - 12
		F3 (C16-C34 Hydrocarbons)	2006/06/28		80	%	80 - 12
		F4 (C34-C50 Hydrocarbons)	2006/06/28		83	%	80 - 12
	BLANK	O-TERPHENYL (sur.)	2006/06/28		81	%	30 - 12
	DEANIN	• •	2006/06/28	ND, RDL=10			30 - 13
		F2 (C10-C16 Hydrocarbons)		•		mg/kg	
		F3 (C16-C34 Hydrocarbons)	2006/06/28	ND, RDL=10		mg/kg	
		F4 (C34-C50 Hydrocarbons)	2006/06/28	ND, RDL=10)	mg/kg	
		Reached Baseline at C50	2006/06/28	YES, RDL=1		mg/kg	
	RPD	F2 (C10-C16 Hydrocarbons)	2006/06/28	NC		%	6
		F3 (C16-C34 Hydrocarbons)	2006/06/28	8.1		%	5
		F4 (C34-C50 Hydrocarbons)	2006/06/28	1.6		%	5
		Reached Baseline at C50	2006/06/28	NC		%	5
178286 MC3	Calibration Check MATRIX SPIKE	Soluble (Hot water) Boron (B)	2006/06/27		103	%	N/
	[B76172-01]	Soluble (Hot water) Boron (B)	2006/06/27		96	%	80 - 12
	SPIKE	Soluble (Hot water) Boron (B)	2006/06/27		105	%	85 - 11
	BLANK	Soluble (Hot water) Boron (B)	2006/06/27	ND, RDL=0.		mg/kg	50 11
	RPD	Soluble (Hot water) Boron (B)	2006/06/27	NC	•	%	3
178287 MC3	Calibration Check	Total Aluminum (Al)	2006/06/27	NQ.	106		80 - 12
110207 1403	Canoradon Check	· · ·	2006/06/27			%	
		Total Antimony (Sb)			105	%	80 - 12
		Total Barium (Ba)	2006/06/27		102	%	80 - 12
		Total Beryllium (Be)	2006/06/27		107	%	80 - 12

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5Ragetetphone(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC			Date				
Batch		Deservator	Analyzed) (alua D		1 3 *4	001
Num Init 1178287 MC3	QC Type Calibration Check	Parameter Total Biamuth (Bi)	yyyy/mm/dd	Value R	ecovery	Units	QC Limits
11/0207 1003	Calibration Check	Total Bismuth (Bi)	2006/06/27		99	%	80 - 120
		Total Cadmium (Cd)	2006/06/27		106	%	80 - 120
		Total Calcium (Ca)	2006/06/27		102	%	80 - 120
		Total Chromium (Cr)	2006/06/27		104	%	80 - 120
		Total Cobalt (Co)	2006/06/27		102	%	80 - 120
		Total Copper (Cu)	2006/06/27		105	%	80 - 120
		Total Iron (Fe)	2006/06/27		95	%	80 - 120
		Total Lead (Pb)	2006/06/27		102	%	80 - 120
		Total Lithium (Li)	2006/06/27		100	%	80 - 120
		Total Magnesium (Mg)	2006/06/27		105	%	80 - 120
		Total Manganese (Mn)	2006/06/27		104	%	80 - 120
		Total Nickel (Ni)	2006/06/27		105	%	80 - 120
		Total Phosphorus (P)	2006/06/27		102	%	80 - 120
		Total Potassium (K)	2006/06/27		101	%	80 - 120
		Total Silver (Ag)	2006/06/27		104	%	80 - 120
		Total Sodium (Na)	2006/06/27		102	%	80 - 120
		Total Strontium (Sr)	2006/06/27		103	%	80 - 120
		Total Tin (Sn)					
			2006/06/27		100	%	80 - 120
		Total Titanium (Ti)	2006/06/27		100	%	80 - 120
		Total Vanadium (V)	2006/06/27		104	%	80 - 120
		Total Zinc (Zn)	2006/06/27		103	%	80 - 120
		Total Zirconium (Zr)	2006/06/27		97	%	80 - 120
	MATRIX SPIKE	Total Antimony (Sb)	2006/06/27		97	%	75 - 125
		Total Barium (Ba)	2006/06/27		118	%	75 - 125
		Total Beryllium (Be)	2006/06/27		102	%	75 - 125
		Total Cadmium (Cd)	2006/06/27		103	%	75 - 125
		Total Chromium (Cr)	2006/06/27		102	%	75 - 125
		Total Cobalt (Co)	2006/06/27		89	%	75 - 125
		Total Copper (Cu)	2006/06/27		101	%	75 - 125
		Total Lead (Pb)	2006/06/27		95	%	75 - 125
		Total Lithium (Li)	2006/06/27		104	%	75 - 125
		Total Manganese (Mn)	2006/06/27		95	%	75 - 125
		Total Nickel (Ni)	2006/06/27		90	%	75 - 125
		Total Sodium (Na)	2006/06/27		107	%	75 - 125
		Total Strontium (Sr)	2006/06/27		97	%	75 - 125
		Total Titanium (Ti)	2006/06/27		102	%	75 - 125
		Total Vanadium (V)	2006/06/27		117	%	75 - 125
		Total Zinc (Zn)	2006/06/27		93	%	75 - 125
	SPIKE	Total Antimony (Sb)	2006/06/27		97	%	N/A
		Total Barium (Ba)	2006/06/27		93	%	N/A
		Total Beryllium (Be)	2006/06/27		99	%	N/A
		Total Cadmium (Cd)	2006/06/27		94	%	N/A
		Total Chromium (Cr)	2006/06/27		90	%	N/A
		Total Cobalt (Co)	2006/06/27		89	%	N/A
		Total Copper (Cu)	2006/06/27		93	%	N/A
		Total Lead (Pb)	2006/06/27		91	%	N/A
		Total Lithium (Li)	2006/06/27		90	%	N/A
		Total Manganese (Mn)	2006/06/27		91	%	N/A
		Total Nickel (Ni)	2006/06/27		92	%	N/A
		Total Sodium (Na)	2006/06/27		92	%	N/A
		Total Strontium (Sr)	2006/06/27		90	%	N/A
		Total Titanium (Ti)	2006/06/27		90	%	N/A
		Total Vanadium (V)	2006/06/27		90	%	N/A
		Total Zinc (Zn)	2006/06/27		92	%	N/A
	BLANK	Total Aluminum (Al)	2006/06/27	ND, RDL=			n/A
		Total Antimony (Sb)				mg/kg	
		rotal Anumony (SD)	2006/06/27	ND, RDL≃	4	mg/kg	

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5Ragets bore(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Lim
1178287 MC3	BLANK	Total Barium (Ba)	2006/06/27	ND, RDL=0.2	mg/kg	
		Total Beryllium (Be)	2006/06/27	ND, RDL=0.1	mg/kg	
		Total Bismuth (Bi)	2006/06/27	ND, RDL=10	mg/kg	
		Total Cadmium (Cd)	2006/06/27	ND, RDL=0.2	mg/kg	
		Total Calcium (Ca)	2006/06/27	ND, RDL=20	mg/kg	
		Total Chromium (Cr)	2006/06/27	ND, RDL=1	mg/kg	
		Total Cobait (Co)	2006/06/27	ND, RDL=0.4	mg/kg	
		Total Copper (Cu)	2006/06/27	ND, RDL=2	mg/kg	
		Total Iron (Fe)	2006/06/27	ND, RDL=10	mg/kg	
		Total Lead (Pb)	2006/06/27	ND, RDL=10	mg/kg	
		Total Lithium (Li)	2006/06/27	ND, RDL=0.4	mg/kg	
		Total Magnesium (Mg)	2006/06/27	ND, RDL=10	mg/kg	
		Total Manganese (Mn)	2006/06/27	ND, RDL=0.4	mg/kg	
		Total Nickel (Ni)	2006/06/27	ND, RDL=4	mg/kg	
		Total Phosphorus (P)	2006/06/27	ND, RDL=4	mg/kg	
		Total Potassium (K)	2006/06/27	ND, RDL=20	mg/kg	
		Total Silver (Ag)	2006/06/27	ND, RDL=1	mg/kg	
		Total Sodium (Na)	2006/06/27	ND, RDL=10	mg/kg	
		Total Strontium (Sr)	2006/06/27	ND, RDL=0.4	mg/kg	
		Total Sulphur (S)	2006/06/27	ND, RDL=40	mg/kg	
	Total Tin (Sn)	2006/06/27	ND, RDL=2	mg/kg		
		Total Titanium (Ti)	2006/06/27	ND, RDL=0.8	mg/kg	
		Total Vanadium (V)	2006/06/27	ND, RDL=2	mg/kg	
		Total Zinc (Zn)	2006/06/27	ND, RDL=2	mg/kg	
		Total Zirconium (Zr)	2006/06/27	ND, RDL=1	mg/kg	
	RPD	Total Aluminum (Al)	2006/06/27	0.2	%	
		Total Antimony (Sb)	2006/06/27	NC	%	
		Total Barium (Ba)	2006/06/27	0.1	%	
		Total Beryllium (Be)	2006/06/27	0.3	%	
		Total Bismuth (Bi)	2006/06/27	NC	%	
		Total Cadmium (Cd)	2006/06/27	NC	%	
		Total Calcium (Ca)	2006/06/27	0.2	%	
		Total Chromium (Cr)	2006/06/27	0.05	%	
		Total Cobalt (Co)	2006/06/27	0.5	%	
		Total Copper (Cu)	2006/06/27	0.03	%	
		Total Iron (Fe)	2006/06/27	4.1	%	
		Total Lead (Pb)	2006/06/27	NC	%	
		Total Lithium (Li)	2006/06/27	0.3	%	
		Total Magnesium (Mg)	2006/06/27	0.2	%	
		Total Manganese (Mn)	2006/06/27	0.2	%	
		Total Nickel (Ni)	2006/06/27	5.0	%	
		Total Phosphorus (P)	2006/06/27	0.4	%	
		Total Potassium (K)	2006/06/27	0.3	%	
		Total Silver (Ag)	2006/06/27	NC	%	
		Total Sodium (Na)	2006/06/27	0.3	%	
		Total Strontium (Sr)	2006/06/27	0.7	%	
		Total Sulphur (S)	2006/06/27	0.5	%	
		Total Tin (Sn)	2006/06/27	NC	%	
		Total Titanium (Ti)	2006/06/27	0.2	%	
		Total Vanadium (V)	2006/06/27	0.2 1.2	%	
		Total Zinc (Zn)				
		Total Zirconium (Zr)	2006/06/27	0.1 NC	%	
78439 LM4	MATRIX SPIKE		2006/06/27	NC	%	
70439 LIVI4		Lopphobio (74) Persona	2000/00/00	145	0/	70 4
	[B76158-00]	Leachable (ZH) Benzene	2006/06/28	100	%	70 - 1
		Leachable (ZH) Ethylbenzene	2006/06/28	94	%	70 - 1
		Leachable (ZH) m & p-Xylene	2006/06/28	97	%	70 - 1

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Jetaborg(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1178439 LM4	MATRIX SPIKE					
	[B76158-00]	Leachable (ZH) o-Xylene	2006/06/28	97	%	70 - 130
		Leachable (ZH) Toluene	2006/06/28	95	%	70 - 130
		Leachable (ZH) 4-BROMOFLUOROBENZEN	2006/06/28	100	%	60 - 1 40
		Leachable (ZH) D4-1,2-DICHLOROETHANE	2006/06/28	85	%	60 - 1 40
		Leachable (ZH) D8-TOLUENE (sur.)	2006/06/28	97	%	60 - 140
	SPIKE	Leachable (ZH) Benzene	2006/06/28	100	%	N/A
		Leachable (ZH) Ethylbenzene	2006/06/28	98	%	N/A
		Leachable (ZH) m & p-Xylene	2006/06/28	102	%	N/A
		Leachable (ZH) o-Xylene	2006/06/28	101	%	N/A
		Leachable (ZH) Toluene	2006/06/28	98	%	N/A
		Leachable (ZH) 4-BROMOFLUOROBENZEN	2006/06/28	99	%	60 - 140
		Leachable (ZH) D4-1,2-DICHLOROETHANE	2006/06/28	81	%	60 - 140
		Leachable (ZH) D8-TOLUENE (sur.)	2006/06/28	101	%	60 - 140
	BLANK	Leachable (ZH) Benzene	2006/06/28	ND, RDL=10	ug/L	00 - 140
		Leachable (ZH) Ethylbenzene	2006/06/28	ND, RDL=10	ug/L	
		Leachable (ZH) m & p-Xylene	2006/06/28	ND, RDL=20	-	
		Leachable (ZH) o-Xylene	2006/06/28	ND, RDL=20	ug/L	
		Leachable (ZH) Toluene		-	ug/L	
			2006/06/28	ND, RDL=10	ug/L	
		Leachable (ZH) Xylenes (Total)	2006/06/28	ND, RDL=20	ug/L	
		Leachable (ZH) 4-BROMOFLUOROBENZEN	2006/06/28	100	%	60 - 140
		Leachable (ZH) D4-1,2-DICHLOROETHANE	2006/06/28	79	%	60 - 140
		Leachable (ZH) D8-TOLUENE (sur.)	2006/06/28	103	%	60 - 140
	RPD	Leachable (ZH) Benzene	2006/06/28	NC	%	50
		Leachable (ZH) Ethylbenzene	2006/06/28	NC	%	50
		Leachable (ZH) m & p-Xylene	2006/06/28	NC	%	50
		Leachable (ZH) o-Xylene	2006/06/28	NC	%	50
		Leachable (ZH) Toluene	2006/06/28	NC	%	50
		Leachable (ZH) Xylenes (Total)	2006/06/28	NC	%	50
1178746 MC3	Calibration Check	Leachable Silver (Ag)	2006/06/27	104	%	80 - 120
		Leachable Arsenic (As)	2006/06/27	103	%	80 - 120
		Leachable Boron (B)	2006/06/27	104	%	80 - 120
		Leachable Barium (Ba)	2006/06/27	102	%	80 - 120
		Leachable Beryllium (Be)	2006/06/27	107	%	80 - 120
		Leachable Cadmium (Cd)	2006/06/27	106	%	80 - 120
		Leachable Cobalt (Co)	2006/06/27	102	%	80 - 120
		Leachable Chromium (Cr)	2006/06/27	103	%	80 - 120
		Leachable Copper (Cu)	2006/06/27	103	%	80 - 120
		Leachable Iron (Fe)	2006/06/27	95	%	80 - 120
		Leachable Nickel (Ni)	2006/06/27	105		80 - 120
		. ,	2006/06/27		%	
		Leachable Lead (Pb)		102	%	80 - 120
		Leachable Antimony (Sb)	2006/06/27	104	%	80 - 120
		Leachable Selenium (Se)	2006/06/27	103	%	80 - 120
		Leachable Thallium (TI)	2006/06/27	102	%	80 - 120
		Leachable Uranium (U)	2006/06/27	98	%	80 - 120
		Leachable Vanadium (V)	2006/06/27	103	%	80 - 120
		Leachable Zinc (Zn)	2006/06/27	103	%	80 - 120
		Leachable Zirconium (Zr)	2006/06/27	98	%	80 - 120
	MATRIX SPIKE	Leachable Arsenic (As)	2006/06/27	106	%	75 - 125
		Leachable Beryllium (Be)	2006/06/27	93	%	75 - 125
		Leachable Cadmium (Cd)	2006/06/27	102	%	75 - 125
		Leachable Chromium (Cr)	2006/06/27	88	%	75 - 125
		Leachable Nickel (Ni)	2006/06/27	87	%	75 - 125
		Leachable Lead (Pb)	2006/06/27	88	%	75 - 125
		Leachable Selenium (Se)	2006/06/27	119	%	75 - 125
		Leachable Thallium (TI)	2006/06/27	82	%	75 - 125
		Locollable manufin (n)	2000/00/27	02	70	70 - 125

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Getaphone(780) 465-1212 FAX(780) 450-4187

Quality Assurance Report (Continued)

Maxxam Job Number: EA626999

QA/QC			Date		• • • •	
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1178746 MC3	BLANK	Leachable Silver (Ag)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Arsenic (As)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Boron (B)	2006/06/27	ND, RDL=50	mg/L	
		Leachable Barium (Ba)	2006/06/27	ND, RDL=10	mg/L	
		Leachable Beryllium (Be)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Cadmium (Cd)	2006/06/27	ND, RDL=0.1	mg/L	
		Leachable Cobalt (Co)	2006/06/27	ND, RDL=10	mg/L	
		Leachable Chromium (Cr)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Copper (Cu)	2006/06/27	ND, RDL=10	mg/L	
		Leachable Iron (Fe)	2006/06/27	ND, RDL=100	mg/L	
		Leachable Nickel (Ni)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Lead (Pb)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Antimony (Sb)	2006/06/27	ND, RDL=50	mg/L	
		Leachable Selenium (Se)	2006/06/27	ND, RDL=0.1	mg/L	
		Leachable Thallium (TI)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Uranium (U)	2006/06/27	ND, RDL=0.5	mg/L	
		Leachable Vanadium (V)	2006/06/27	ND, RDL=5	mg/L	
		Leachable Zinc (Zn)	2006/06/27	ND, RDL=50	mg/L	
		Leachable Zirconium (Zr)	2006/06/27	ND, RDL=50	mg/L	
	RPD	Leachable Lead (Pb)	2006/06/27	NC	%	35
1179249 RTA	Calibration Check	Total Petroleum Hydrocarbon	2006/06/28	102	%	82 - 117
	QC STANDARD	Total Petroleum Hydrocarbon	2006/06/28	97	%	N/A
	BLANK	Total Petroleum Hydrocarbon	2006/06/28	ND, RDL=50	mg/kg	
	RPD [B76158-02]	Total Petroleum Hydrocarbon	2006/06/28	NC	%	40
1179256 YY1	Calibration Check	Mercury (Hg)	2006/06/28	100	%	85 - 115
	QC STANDARD	Mercury (Hg)	2006/06/28	98	%	N/A
	BLANK	Mercury (Hg)	2006/06/28	ND, RDL=0.05	mg/kg	
	RPD	Mercury (Hg)	2006/06/28	NC	%	35

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

1) Please note that the recovery of some compounds are outside control limits however the overall quality control for this analysis meets our acceptability criteria.

Edmonton: 9331 - 48th Street T6B 2R4 Telephone(780) 468-3500 FAX(780) 466-3332 Edmonton: 9619 - 42 Avenue T6E 5R2 Telephone(780) 465-1212 FAX(780) 450-4187

APPENDIX C

Methodology

PHASE II ESA METHODOLOGY

1.0 PRE-DRILLING SITE INVESTIGATIONS

1.1 Service and Utility Locates

The locations of services and utilities were established prior to the drilling and sampling phase of the investigation. The locations of underground utilities were confirmed prior to drilling through Alberta 1st Call.

2.0 SUBSURFACE INVESTIGATION

2.1 Test Pits

Three (3) test pits were advanced at the site to a maximum depth of 3.0 m below grade (mbg) using a rubber tire backhoe.

2.1 Drilling

Boreholes were advanced to maximum depths of 11.3 m below ground surface using a truck-mounted auger drilling rig. Disturbed samples were collected from the solid stem augers for logging the characteristics of the materials and for field monitoring of soil vapour level.

2.2 Vapour Monitoring

Field screening for the presence of combustible soil vapours (CSV) in the soil samples was conducted using a portable GasTechtor 1238ME (GasTechtor) calibrated to a hexane standard and volatile soil vapours (VSV) using a portable photoionization detector (PID) calibrated to an isobutylene standard.

The soil samples subjected to vapour screening were transferred to sealable plastic bags. Each bag was approximately half filled with soil to provide adequate headspace for the accumulation of released vapours. Samples were broken by hand to increase surface area and permit vapour release. The samples were transferred quickly to minimize vapour loss. The plastic bag was then left to stand upright and undisturbed for a period of at least five minutes at ambient air temperature.

The concentration of accumulated hydrocarbon and organic vapours in the headspace was then measured by inserting the probe of the GasTech into the headspace of the bag. The CSV concentrations were measured in parts per million (ppm) or percent of the Lower Explosive Limit (% LEL) relative to hexane. The measurements were recorded on a field log for comparison with subsequent samples and boreholes.

The concentration of accumulated hydrocarbon and organic vapours in the headspace was then measured by inserting the probe of the PID into the headspace of the bag. The VSV concentrations were measured in parts per million (ppm) relative to isobutylene. The measurements were recorded on a field log for comparison with subsequent samples and boreholes.

2.3 Borehole Logging

Materials retrieved from the drilling operation were logged by Jacques Whitford personnel. The texture and composition of materials, stratigraphic boundaries, saturation, and the presence of hydrocarbon vapours or other indications of contamination were recorded.

2.4 Soil Sampling

Soil samples were collected continuously from the boreholes at approximately 0.75 m intervals (where possible) directly from the standard augers. One half of the sample was field tested for combustible / volatile vapours and the other half was placed in laboratory supplied containers for potential laboratory analyses.

2.5 Soil Analysis

Soil samples collected during the drilling of boreholes were analyzed by Maxxam Analytics Inc. (Maxxam) of Edmonton, Alberta. Soil samples were analyzed for BTEX, petroleum hydrocarbon fractions F1-F4 and VOCs, metals and glycols.

The samples were generally taken from suspected worst case zones of contamination, as determined by field observation and field vapour screening results.

2.6 Establishment of Monitoring Wells

Monitor wells were constructed using 50 mm diameter schedule 40 PVC casing and 20 slot PVC screen. The annular space around the screen was filled with *Envirowell Gravel 4-8 Mesh* (coarse silica sand) and the wells were sealed above the sand pack with a 0.60 m thick layer of bentonite chips. The monitor wells were completed with above grade lockable steel protectors and slip caps. Monitor well construction details are provided on the Monitor Records in **Appendix B**.

3.0 BOREHOLE AND WELL SURVEY

3.1 Survey Well Elevations

Each test pit and borehole were horizontally located relative to a benchmark (a spike nailed into the base of a tree stump at the north end of the former fuel cache) to develop an accurate aerial plan of the site showing sampling locations. An elevation survey of the grade surface and top of each monitor casing were established relative to the benchmark using standard surveying methods.

3.2 Establish Static Elevations and Gradients

The elevations of water and product, if detected, were determined under conditions where no pumping or other activity, which would influence water levels, was being conducted. These measurements are necessary for the establishment of potential gradients, which are used in establishing the pattern of contaminant migration.

Water levels and depth to product, if present, were measured using a interface probe. The interface probe was rinsed between monitoring wells using distilled water.

4.0 GROUNDWATER SAMPLING

4.1 Well Development, Purging and Sampling

Groundwater was not found in the monitor wells following completion of the wells and the subsequent monitoring event on July 12, 2006.

APPENDIX D

Borehole/Monitor Well Records

LIENT: PARKS CANADA			BC	BOREHOLE N									
ROJECT: Pine Lake Wood Buffalo Park			JW PROJECT NO: 1013548 SURFACE ELEVATION: 99.92 m SITE DATUM: Local							PL-MV			
	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	BLOW COUNT	COMBL	COMBUSTIBLE VAPOUR LEVEL [ppmv] 1 10 100 1000 10000			SAMPLE ID Analysis [If Requested]	WELL WELL	COMPLETION	COMPLETION NOTES	
6-	0,											stickup, jplug	-
4 - 2 -		Oregand Outfrage											Ē
0 2 -	•••••	Ground Surface SAND	J	>						X		backfilled with	10
4 -		orange brown, dry) [>	19	• : : : : : : : : : : : : : : : : : : :			SA1		s_	drill cuttings	ļ
6 - 8 -		gravelly SAND \light brown, dry		>				· · · · · · · · · · · · · · · · · · ·				bentonite seal	-99
0-{ 2-{		SAND fine, light brown, dry	- { [19	<u> </u>			SA2		R		- 9
4 -	•••••	line, light brown, dry	<u> </u>							K	K		ļ
6 - [8 - [{ [10				SA3	K	И		-9
0- 2-			5							X	\mathbb{N}		-
4 -		Grey fine sand at 2.25 meters	15		5				644	X	X		F
в-									SA4	Ŋ	Ю		-9
2−¦` 2 −										X	X	sandy cuttings	ł
4 - 5 -) (5				SA5	X	R		F
3+	ΤΤΤ	SILT		>						K	Ю		-9
) 2		greenish brown and greyish brown, moist			19				SA6	K	И		ł
4 - 3 -				>						X	\mathbb{N}		F
3 -			{ [5				SA7	X	K		-9
2-1			5				· · · · · · · · · · · · · · · · · · ·	:			K		ŀ
4 - 3 -			۱ ک			5			SA8 BTEX Metals	K	X		F
3 -						1			BTEX, Metals, VOC	K	K		-9
2- 2-				>		<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		K	K	sandy cuttings	- 9
4 -) [10	• • • • • • • • • • • • • • • • • • • •			SA9		\mathbb{N}		F
3+		silty CLAY		>						K	K		-9
Э 2		grey, moist			19	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	SA10	Ē			ł
↓-/ }-	1			>						ŀĒ	1		F
3-			{ [19				SA11				-9
)+ 2 -{	111		{ [· · · · · · · · · · · · · · · · · · ·						ł
1 - 5 -					10				SA12	E			F
3+	111								5412]		-9
)+ 2-		SILT	15			· · · · · · · · · · · · · · · · · · ·				E		50 mm 010 slot PVC pipe	ł
4 - 5 -		grey, dry) ()		5				SA13				F
3+		silty CLAY		>						ļĘ		envirowell	-9
2-		grey, wet			19				SA14		<u> </u>	gravel 4-8 mesh	
↓ -/ 3 -	1			>									F
3-			{		10	<u> </u>	· · · · · · · · · · · · · · · · · · ·		SA15				-8
2	111	End of horobolo at 11.2 m	{	_				· · · · · · · · · · · · · · · · · · ·			1	end cap	ł
		End of borehole at 11.3 m											
		Completion Information: Screened interval from 5.3 m to 11.3 m below											
		surface											
		Top of Pipe (TOP) Elevation = 100.750 m											
⊥ Es	STIG	METHOD:Solid Stem Auger	Sa	mple N	lotes:⊡⊃	Auge	r Sample			+			
		DATE: June 20, 2006				0.1				s	heet	1 of 1	
		DATE: June 20, 2006 BY: SB								S	heet	1 of 1	

CLIENT: PARKS CANADA PROJECT: Pine Lake Wood Buffalo Park			JW PR		BOREHOLE								
Wood Buffalo Park						CE ELEV	ATION: S	99.74 m		PL-MV			
	SOIL TYPE	SOIL DESCRIPTION	SAMPLE TYPE	BLOW COUNT		STIBLE ' [ppr	VAPOUF nv]		SAMPLE ID Analysis [If Requested]	WELL	WATER LEVEL		
-0.6 - -0.2 - 0.2 - 0.2 - 0.4 - 0.6 - 1.2 - 1.4 - 1.6 - 1.2 - 1.4 - 1.6 - 1.2 - 2.2 - 2.4 - 2.2 - 2.4 - 2.2 - 3.2 - 3.2 - 3.4 - 3.2 - 3.4 - 3.2 - 3.4 - 4.0 - 4.2 - 4.4 - 5.2 - 5.2 - 5.4 -	× · · · · · · · · · · · · · · · · · · ·	Ground Surface TOPSOIL roots SAND orange brown, dry silty SAND brown, dry SILT brown, dry SILT and CLAY brown grey, moist) 10 			SA1 SA2 SA3 BTEX, Metals, VOCs SA4 SA5 SA6 SA6 SA7			stickup, jplug	- 11 - 11
5.6 - 5.8 - 6.0 - 6.2 - 6.4 - 6.6 - 7.0 - 7.2 - 7.4 - 7.6 - 7.8 - 8.0 - 8.2 - 8.4 - 8.4 - 8.4 - 8.4 -		silty CLAY grey, moist							SA8 SA9 SA10 SA11 SA12			backfilled with drill cuttings	- -94 - - - - - - - - - - - - - - - - -
8.8 - 9.0 - 9.2 - 9.4 - 9.6 - 9.8 - 10.0 - 10.2 - 10.4 - 10.6 - 10.8 - 11.0 -					5				SA13 SA14 SA15			50 mm 010 slot PVC pipe envirowell gravel 4-8 mesh	-9
1.2		End of borehole at 11.3 m Completion Information: Screened interval from 5.3 m to 11.3 m below surface Top of Pipe (TOP) Elevation = 100.577 m										end cap	- -
NVES	STIG.	METHOD:Solid Stem Auger DATE: June 20, 2006 3Y:SB	San	nple N	otes:	Augei	Sampl	e		s	heet	1 of 1	j.

		T: PARKS CANADA CT: Pine Lake Wood Buffalo Park				JW PR		BOREHOLE NO						
SOIL TYPE		SOIL DESCRIPTION		SAMPLE TYPE	BLOW COUNT	SITE DA	SITE DATUM: Loc COMBUSTIBLE VAPOUR LE [ppmv]		Local	CAI EVEL SAMPLE ID Analysis [If Requested]		WATER LEVEL		
8 - 6 -	05						, , ,	00 1					stickup, jplug	-
4 - 2 -		Cround Surface								2 2 2				- 10
0+ 2-	<u></u>	Ground Surface	Г	Ι						SA1	\forall	X	backfilled with drill cuttings	ł
4 6 -		\roots SAND	- []] }		5				BTEX, Metals, VOCs			bentonite seal	-
8- 0-		∖ orange brown, dry ∖Light brown sand at 0.6 meters	Γ							- - 				-99
2 - 4 -		silty SAND light brown, dry] }			A			SA2		Я		-
6-		ight brown, dry] }						- - - -		X		-98
8-†. 0-†.] }			à			SA3				- 90
2- <u>-</u> 4-		SILT										X		-
6- 8-		light brown, dry] }		10				SA4		X		-97
0- 2 -							- <u> </u>	· · · · · · · · · · ·	<u></u>	2		Я	sandy cuttings	F
4 - 6 -] }		5				SA5		X		F
8- 0-												3		-96
2] }		10				SA6		Х		Ł
4- 6-							· · · · · · · · · · · · · · · · · · ·					X.		-
8- 0-] }		10	<u> </u>		<u> </u>	SA7	K	X		-9
2- 4-										x. x.		X		F
6- 8-				j }			%			SA8		X		-94
0- 2-							· · · · · · · · · · · · · · · · · · ·			-		9		
4 -				j		1	a			SA9		X	sandy cuttings	Ł
6- 8-		silty CLAY							·· · · · · · · · · · · · · · · · · · ·			$\langle \rangle$		-9:
0- 2-	X	grey, dry		j		10	· · · · · · · · · · · · · · · · · · ·			SA10		X		F
4 / 6 -												X		F
8- 0-/	X		<	í Į		10	· · · · · · · ·			SA11				-92
2-4-		Moist brown silty clay at 8.25 meters												Ļ
6- 8-	X		<	í Į		10				SA12				-9
0-		Moist to wet grey silty clay at 9.0 meters						· · · · · · · · · · · · · · · · · · ·			日	•	50 mm 010 slot	
2- 4-/			<	j }		10	• • • • • • •			SA13			PVC pipe	-
6- 8-										а а а			envirowell	-90
0- 2-			<	i J		5	· · · · · · ·			SA14		•	gravel 4-8 mesh	ŀ
4 - 6 -									··· · · · · · · · · · · · · · · · · ·	2 2 2				F
8- 0-			<	j		19	· · · · · · · · · · · · · · · · · · ·		······································	SA15				-89
2	Щ	End of borehole at 11.3 m		i						x 	┝╘		end cap	ł
		Completion Information:								5 2 5 2				
		Screened interval from 5.2 m to 11.3 m below								x z x				
		surface Top of Pipe (TOP) Elevation = 100.675 m												
										* *				
							· · · · · · · · · · · · · · · · · · ·			x - -				
/ES	TIG.	METHOD:Solid Stem Auger	5	Sam	ple No	⊔ otes⊡⊃	Auge	er Samp	e				1	
	TIG	DATE: June 20, 2006									SH	neet	1 of 1	

:Lien Roji	NT: ECT:			SURF	BOREHOLE RECORD JW PROJECT NO: 1013548 SURFACE ELEVATION: N/A SITE DATUM: N/A								BOREHOLE NO		
	SOIL TYPE	SOIL DESCRIPTION		SAMPLE TYPE BLOW COUNT				/APOUR 1V]		SAMPLE ID Analysis [If Requested]	TEST PIT COMPLETION	WATER LEVEL	COMPLETION NOTES	DEDTH [m]	
<u>}</u>	<u></u>	TOPSOIL ¬roots	_				· · · · · · · · · · · · ·								
0.2		silty SAND orange brown, dry	/				· · · · · · · · · · · · · · · · · · ·			SA1	\otimes			-	
		Stange brown, dry										\$			
4		Light brown at 0.4 meters	1				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·					-	
6												4		-	
8-										SA2	\otimes	$\overline{\langle}$		ŀ	
0									· · · · · · · · · · · · · · · · · · ·			\$		-1.0	
												$\left\{ \right.$			
2											\bigotimes			F	
							· · · · · · · · · · · · · · · · · · ·						backfilled with		
1							· · · · · · · · · · · · · · · · · · ·					\langle	cuttings	-	
3					5					SA3 BTEX, VOC				-	
							· · · · · · · · · · · · · · · · · · ·			BIEX, VOO		\langle			
3-[-												5		ŀ	
<u>ل</u>							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			$\overline{\langle}$		-2.	
`		Brownish grey at 2.0 meters					· · · · · · · · · · · · · · · · · · ·							2.	
2-														ŀ	
							· · · · · · · · · · · · · · · · · · ·					\langle			
4-						 ` ``				SA4					
6-							· · · · · · · · · · · · · · · · · · ·					\langle		-	
•							· · · · · · · · · · · · · · · · · · ·								
8	r . r	End of borehole at 2.8 m												t	
							· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · ·								
							· · · · · · · · · · · ·								
							· · · · · · · · · · ·								
							· · · · · · · · · · · · · · · · · · ·								
							· · · · · · · · · · · ·								
							· · · · · · · · · · · · ·								
							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · ·								
							· · · · · · · · · · · ·								
							· · · · · · · · · · ·								
							· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · ·								
							· · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
							· · · · · · · · · · · · · · · · · · ·								
							· · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·						
	T : 6				Natad		Grah	Sample							
		METHOD:Backhoe DATE: June 19, 2006		Sample	Notes:		GIAD	Sample			Ch	eet	1 of 1		
		3Y:SB												Ja Wh	

JWEL EE 2005 PINE LAKE.GPJ EE DATA TEMPLATE V5.GDT 08/16/06

Wood Buffalo Park SOIL DESCRIPTION OPSOIL Dots AND range brown, dry ravelly SAND ght brown, moist	SAMPLE TYPE	BLOW COUNT	JW PROSURFACE	E ELEVA TUM: STIBLE V	ATION: N N /APOUR 1v]	/A /A	SAMPLE ID Analysis [If Requested] SA1		COMPLETION NOTES	
OPSOIL bots SAND range brown, dry gravelly SAND ght brown, moist	SAMPLE TYPE	BLOW COUNT	1 10	[ppn	1ν] 0 10	00 10000	Analysis [If Requested]	COMPLETION	COMPLETION NOTES	ЛСБТН [m]
oots AND range brown, dry gravelly SAND ght brown, moist		BI	10				SA1			Ľ
oots AND range brown, dry gravelly SAND ght brown, moist			19				SA1			-
range brown, dry ravelly SAND ght brown, moist			19			· · · · · · · · · · · · · · · · · · ·	SA1			-
ght brown, moist										
ght brown, moist				· · · · · · · · · · · · · · · · · · ·				$K \times I$	1	F
ght brown, moist								X		
ш т										-
: П Т							SA2			
ш т	,			X			BTEX, VOCs, Metals, Glycol;			
ш т	—			<u> </u>			Dup for BTEX/F1-F4			-1.
: П Т	—									
:II Т				· · · · · · · · · · · · · · · · · · ·				$\left \bigcup \right $		ſ
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				F
								$\left \bigcup\right $	backfilled with cuttings	
rey, moist				· · · · · · · · · · · · · · · · · · ·						f
										ŀ
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · ·						-2.
				50			SA3			
										-
				· · · · · · · · · · · · · · · · · · ·						-
				· · · · · · · · · · · · · · · · · · ·						
nd of borehole at 3.0 m										3.
				· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·						
			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					
				· · · · · · · · · · · · · · · · · · ·						
				· · · · · · · · · · · · · · · · · · ·						
								\square		
	Sam	ple N	otes:	Grab S	sample					
	THOD:Backhoe TE: June 19, 2006			THOD:Backhoe	THOD:Backhoe Sample Notes Grab S	THOD:Backhoe Sample Notes Grab Sample				

JWEL EE 2005 PINE LAKE.GPJ EE DATA TEMPLATE V5.GDT 08/16/06

				BOREHOLE RECORD JW PROJECT NO: 1013548 SURFACE ELEVATION: N/A						BOREHOLE NO	
			<u> </u>	SURFAC SITE DA			I/A I/A		z	FL.	• 1 F
	IL TYPE	SOIL DESCRIPTION	SAMPLE TYPE BLOW COUNT	COMBU	STIBLE V [ppm		LEVEL	SAMPLE ID Analysis [If Requested]	TEST PIT COMPLETION WATER LEVEL	COMPLETION NOTES	
	SOIL		S A BL	1 10			00 10000		A CO		Ĺ
•	<u>\\''/</u>	TOPSOIL \roots			· · · · · · · · · · · · · · · · · · ·						
2-		SAND orange brown, dry						SA1			F
4				5	· · · · · · · · · · · · · · · · · · ·			BTEX, VOCs			
ŀ					· · · · · · · · · · · · · · · · · · ·						
3		silty SAND			· · · · · · · · · · · · · · · · · · ·						-
		light brown, moist			· · · · · · · · · · · · · · · · · · ·						
3-[ľ
: : 					35	<u> </u>		SA2			-1.
:					· · · · · · · · · · · · · · · · · · ·						
2-1					· · · · · · · · · · · · · · · · · · ·						F
 -											
					· · · · · · · · · · · · · · · · · · ·					backfilled with cuttings	
;-					· · · · · · · · · · · · · · · · · · ·						ŀ
3-i-					· · · · · · · · · · · · · · · · · · ·						
, - -				· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·				-2.
					· · · · · · · · · · · · · · · · · · ·						
2 - [.				10	• • • • • • • • • • • • • • • • • • • •			SA3			F
1 -					· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·						
3-					· · · · · · · · · · · · · · · · · · ·						ł
:											
3-[
		End of borehole at 2.9 m									
					· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·						
					· · · · · · · · · · · · · · · · · · ·						
					Croh	Comple					
ES.	STIG.	METHOD:Backhoe	Sample	Notes:	Grab S	Jampie					

JWEL EE 2005 PINE LAKE.GPJ EE DATA TEMPLATE V5.GDT 08/16/06

APPENDIX E

Site Photographs

Photo 1: Removing Aviation Fuel Drums from the Former Fuel Cache Area

Photo 2: Surficial Staining at the Former Fuel Cache Area

Photo 3: Abandoned Aviation Fuel Drum from the Former Fuel Cache

Photo 4: Open Test Pit Showing Stratigraphy

Photo 5: Drilling Monitor Well PL-MW2

Photo 6: Former Drum Cache Following the Site Assessment (Facing South)

APPENDIX F

FCSAAP Scoring

- 1 Read Sections 1.0, 2.0, and 3.0 of the CCME (1992) National Classification System for Contaminated Sites document as well as Sections 1.0 and 3.0 of the Franz Environmental Inc. (2003) FCSAAP Contaminated Site Classification Guidance Document. These documents provide relevant background information on the contaminated site classification systems and details on how to select scores for the various evaluation factors.
- 2 Obtain the following site information to complete the classification (list from CCME 1992):
 - Description of site location Type of contaminants or materials likely to be present at site (and/or description of historical activities) Approximate size of site and quantity of contaminants Approximate depth to water table Geological map or survey information (soil, overburden, and bedrock information) Annual rainfall data (can be inferred from rainfall map of Canada) Surface cover information Proximity to surface water Topographic information Flood potential of site Proximity to drinking water supply Uses of adjacent water resources Land use information (on-site and surrounding)
- 3 Complete Worksheets 1 6 by documenting the relevant site information, the sources of the information, the scores, and the rationale for selecting those scores. Enter the site information, sources, and scoring rationale in the large blue cells of the worksheets. Providing this information will facilitate the review of scores by the FCSAP expert support departments. Select scores after consulting the *FCSAP Contaminated Site Classification Guidance Document* and enter the appropriate scores in the green cells of the worksheets. Values in yellow cells will be calculated automatically.
- Note: Factors for "Exposure Pathways" (Worksheets 2 4) and "Receptors" (Worksheets 5 6) may be scored based on contamination and impacts that are *known* to have occurred or on those that may *potentially* occur. Only one of either the known or potential scores is used to calculate the classification score for the site. However, if values are entered for both the known and potential scores for a given factor, the higher value will be used to calculate the score.
- Note: Scores for "Contaminant Characteristics" and potential scores for "Exposure Pathways" and "Receptors" can be based either on "Speculation" or "Data". As long as sufficient site information is available (see Point 2 above), most scores should be based on data. In such cases, this should be indicated by selecting "Data" from the dropdown menu to the right of the cell containing the numerical score. However, if sufficient site information is not available to assign a score to a particular factor, it should be assigned a score that is one-half the maximum score for that factor. Such scores should be identified by selecting "Speculation" from the dropdown menu. Scores will not be included in the site score unless either "Data" or "Speculation" is chosen from the associated dropdown menu.
- Note: If specific site conditions have not been addressed by the evaluation factors, positive or negative special consideration scores may be added. Use of special consideration scores should be the exception rather than the rule and justification for such scores should be documented in the associated blue cells.
- Note: Additional instructions are included in the worksheets in bold, blue text.

I. Contaminant Characteristics (max. 33) Complete A, B, C, and Special Considerations.		Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
A. Degree of Hazard (max. 14) High concern contaminants - high concentrations High concern contaminants - low concentrations Medium concern contaminants - high concentrations Medium concern contaminants - low concentrations Low concern contaminants (high or low concentrations)	A. Site Score	14 11 8 5 3	11	Data	Contaminants of concern include various contaminants of high concern such as benzene and lead. The concentrations of these contaminants were all low. (Phase II ESA)
B. Contaminant Quantity (max. 10) >10 ha or 5000 m ³ 2 to 10 ha or 1000 to 5000 m ³ <2 ha or 1000 m ³	B. Site Score	10 6 2	2	Data	No contaminated soils were identified. (Phase II ESA)
C. Physical State (max. 9) Highly mobile contaminants or high potential for mobility by erosion Moderately mobile contaminants Low to immobile contaminants or low potential for mobility by erosion	C. Site Score	9 7 3	3	Data	Low mobility of contaminants based on low concentrations. Low potential for erosion as the site is relatively flat and surrounded by trees. (Phase II ESA)
Special Considerations (max. 6)		-6 to +6	-2		No elevated concentrations detected.
	Based on Data on Speculation Considerations		16 0 -2		

14

Total Site Score for Contaminant Characteristics

FCSAP Site Classification Worksheets (September 2005)

II. Exposure	Pathways
--------------	----------

II. Exposure Pathways				Deciment relevant site information, the course of that information, and the
A. Groundwater (max. 11)	Scoring	.	Information	Document relevant site information, the source of that information, and the rationale for selecting the site score.
Complete 1 (Known) or 2 (Potential), and Special Considerations.	Guideline	Site Score	Source	······································
1. Known contamination and operable groundwater pathway within and/or beyond the preparty beyondary (may, 44)				
beyond the property boundary (max. 11) For potable groundwater environments, 1) groundwater concentrations exceed				
background concentrations and the CCME Canadian Drinking Water Guidelines				
(CDWG) by 2X or 2) there is known contact of contaminants with groundwater, based				
on physical evidence of groundwater impacts.				
For nonpotable environments (typically urban environments with municipal services),	11			
1) groundwater concentrations exceed 2X the appropriate nonpotable guidelines or	11			
modified generic guidelines (which excludes ingestion of drinking water pathway) or 2)				
there is known contact of contaminants with groundwater, based on physical evidence				
of groundwater impacts.				
For potable water environments, groundwater concentrations exceed background				
concentrations and the CDWG 1 to 2X.				
For nonpotable environments, groundwater concentrations exceed by 1 to 2X the	6			
appropriate nonpotable guidelines or modified generic guidelines (which excludes	U			
ingestion of drinking water pathway).				
Meets CDWG for potable environments; meets nonpotable criteria or modified generic	0			
(excludes ingestion of drinking water pathway) for nonpotable environments, or	0			
Absence of groundwater exposure pathway.				
A1. Site Score				
2. Potential for Groundwater Contamination. Complete a, b, c, d, and e.				
2a. Engineered Subsurface Containment (max. 4)				
No containment	4			
Partial containment	2			
Full containment or direct, monitored evidence of natural attenuation processes	0			
A2a. Site Score		4	Data	Field observations (Phase II ESA)
2b. Thickness of confining later over aquifer of concern or groundwater				
exposure pathway (max. 1.5)				
3 m or less including no or discontinuous confining layer or unknown	1.5			
3 to 10 m	1.5			
>10 m	Ö			
A2b. Site Score	Ŭ	1.5		Unknown thickness.

II. Exposure Pathways

A. Groundwater (max. 11) Complete 1 (Known) or 2 (Potential), and Special Considerations. 2c. Hydraulic conductivity of confining layer (max. 1.5)	Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
>10 ⁻⁴ cm/s or no confining layer or unknown	1.5			
10 ⁻⁴ to 10 ⁻⁶ cm/sec	1			
$<10^{-6}$ cm/sec	0.5			
A2c. Site S		0.5		Native stratigraphy assumed to be fine grained. (Phase II ESA)
2d. Annual precipitation (max. 1)				
>1000 mm and moderately to highly permeable surface material	1			
600 mm and moderately to highly permeable surface material	0.6			
400 mm and low to moderately permeable surface material	0.4			
200 mm and low permeability surface material	0.2			<500mm precipitation/year in Wood Buffalo. (Agricultural Land Resource Atlas of
A2d. Site S	core	0.4	Data	Alberta)
2e. Hydraulic conductivity of aquifer of concern (max. 3)				
>10 ⁻² cm/sec	3			
10 ⁻² to 10 ⁻⁴ cm/sec	1.5			
<10 ⁻⁴ cm/sec	0.5			
A2e. Site S		1.5	Speculation	Unknown.
Special Considerations (max. 4)	-4 to +4	-2		No soil impacts identified. (Phase II ESA)
		·	1	
Score Based on Score Based on Specula Score from Special Considerat	ation	4.4 1.5 -2		

Total Site Score for Exposure Pathways/ Groundwater

3.9

 II. Exposure Pathways B. Surface Water (max. 11). Complete 1 (Known) or 2 (Potential), and Special Considerations. 1. Observed or measured contamination, above background conditions of surface 	Scoring Guideline e	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
water/effluent near the site which is considered an operable exposure pathway				
(max. 11) Known concentrations of surface water:				
1) Concentrations of surface water: 1) Concentrations exceed background concentrations and exceed CCME CWQG -				
Protection of Aquatic Life Guidelines by 2X; or				
2) There is known contact of contaminants with surface water based on physical	11			
evidence; or				
 In the absence of CWQG, chemicals have been proven to be toxic based on site specific testing (e.g. toxicity testing, bioassay testing or other indicator testing of exposure). 				
Known concentrations of surface water which are above background and between 1				
and 2X CWQG.	6			
Meets CWQG or absence of surface water exposure pathway	0			
B1. Site Scor	9			
2. Potential for Surface Water Contamination. Complete a, b, c, d, and e. 2a. Surface Containment (max. 5) No containment Partial containment Full containment B2a. Site Scor 2b. Distance to Perennial Surface Water (max. 3)	5 3 0.5 9		Data	No surface water containment.
2 Distance to Petermial Surface water (max. 3) 0 to <100 m	3			
100 to 300 m	2			
>300 m	0.5			Nearest surface water body is the Salt River, approximately 250 m to 500 m south of
B2b. Site Scor	9	2	Data	the site. (Phase II ESA)
2c. Topography (max. 1.5)				
Contaminants above ground level and slope is steep Contaminants at or below ground level and slope is steep	1.5 1.2			
Contaminants at of below ground level and slope is sleep	0.8			
Contaminants at or below ground level and slope is flat	0.0			
B2c. Site Scor	9	0	Data	No contaminants identified. (Phase II ESA)
2d. Run-off Potential (max. 1)				
>1000 mm precipitation and low permeability surface material	1			
500 - 1000 mm precipitation and moderately permeable surface materia	0.6			
<500 mm precipitation and highly permeable surface material B2d. Site Scor	0.2 e	0.2	Data	<500mm precipitation/year in Wood Buffalo. (Agricultural Land Resource Atlas of Alberta)

II. Exposure Pathways B. Surface Water (max. 11). Complete 1 (Known) or 2 (Potential), and Special Considerations.	Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
2e. Flood Potential (max. 0.5)				
1 in 2 years	0.5			
1 in 10 years	0.3			
1 in 50 years	0.1			
B2e. Site Score		0.1	Data	Based on location of the site and the nearby surface water body.
Special Considerations (max. 4)	-4 to +4			
Score Based on Data Score Based on Speculation Score from Special Considerations		7.3 0 0		
Total Site Score for Exposure Pathways/ Surface Water		7.3		

 II. Exposure Pathways C. Direct Contact (max. 11). Complete 1 (Known) or 2 (Potential), and Special Considerations. 1. Known contamination of media by direct contact (max. 11) Known contamination of media (soil, sediments and air): 	Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
 Concentrations exceed background concentrations and exceed 2X applicable environmental quality criteria (EQC) for the appropriate land use on/near the site; or 2) There is known contact of contaminants with media based on physical evidence; or There is known vapour migration into indoor air environment (building). 	11			
 Known contamination of media (soil, sediments, and air) with concentrations exceeding background and exceeding by 1 to 2 X applicable EQC for the appropriate land use on/near the site. No exceedance of applicable EQC for appropriate land use on/near the site; or no physical evidence of contamination of the media; or absence of direct contact exposure pathway. 	6 0			No elevated concentrations of the contaminants of concern were identified. (Phase II
C1. Site Score	0	0		ESA)
 2. Potential for Direct Human and/or Animal Contact. Complete a, b, and c. 2a. Vapour Emissions (gases, subsurface and surface generated vapours, contaminated dust; max. 5) Suspected vapour migration with a potential for exposure to impact on an indoor air environment (building on-site or near site). Evidence of significant dust generated and impacting on-site and off-site potential or known receptors. No vapour emissions and/or no dust generated 	5 3 0			
2b. Accessibility of Site (ability to contact materials; max. 4) Limited barriers to prevent site access; contamination not covered Moderate access or no intervening barriers; contaminants are covered; remote locations in which contaminants are not covered Controlled access or remote location and contaminants are covered C2b. Site Score	4 3 0			


II. Exposure Pathways C. Direct Contact (max. 11). Complete 1 (Known) or 2 (Potential), and Special Considerations.	Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
 2c. Hazardous Soil Gas Migration and Explosive Potential from the Site (max. 2) Contaminants are volatile, mobile in the gas/vapour phase and are a potential explosion hazard; soil permeability is high Contaminants are volatile, mobile in the gas/vapour phase and are a potential explosion hazard. Soil permeability is low and/or groundwater is <2 m from surface. Contaminants are neither volatile nor mobile in the gas/vapour phase. No risk of explosive hazard. 	2 1 0			
Special Considerations (max. 4)	-4 to +4			
Score Based on Data Score Based on Speculation Score from Special Considerations		0 0 0		
Total Site Score for Exposure Pathways/ Direct Contact		0		

III. Receptors A. Human and Animal Uses (max. 18). Complete 1 (Known) or 2 (Potential), and Special Considerations.	Scoring Guideline	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
1. Known adverse impact on humans or animals (domestic or documented traditional food source) as a result of the contaminated site (max. 18)				
Documented adverse impact or high quantified exposure which has or will result in an adverse effect, injury or harm or impairment of the safety to humans or animals (domestic or documented traditional food source) as a result of the contaminated site.	18			
Suspected adverse impact or moderately high exposure which has or will result in an adverse effect, injury or harm or impairment of the safety to humans or animals (domestic or documented traditional food source) as a result of the contaminated site.	15			
No quantified or suspected exposures/impacts in humans or animals A1. Site Score	0			
 2. Potential for impacts on humans and animals Complete a, b, and c. a) Drinking water supply (max. 9). Complete i (Known) or ii (Potential). i) Known impact on drinking water supply (max. 9) Known contamination of drinking water supply (groundwater or surface water) with (1) concentrations above background and CDWG, or (2) there is physical evidence of drinking water contamination. Measurable concentrations of contaminants in the drinking water supply (groundwater or surface water) but concentrations are less than the CDWG or there is a significant potential for CDWG exceedances of the water supply in the near future Drinking water supply is known not to be contaminated 	9 7 0			
A2ai. Site Score	·			
 ii) Potential for impact on drinking water supply (max. 9) Complete both sections. Proximity to drinking water supply (max. 6) 0 to <100 m 100 to <300 m 300 m to <1 km 1 to 5 km 	6 5 4 3			
A2aii(Part1). Site Score	5	3	Data	Groundwater in the area is not used as a potable source. (Phase II ESA)

III. Receptors

I. Receptors A. Human and Animal Uses (max. 18). Complete 1 (Known) or 2 (Potential), and Special Considerations. Availability of alternative drinking water supply (max. 3) Alternative drinking water supply is not available	Scoring Guideline 3	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
Alternative drinking water supply difficult to obtain	2			
Alternative drinking water supply available A2aii(Part2). Site Score	0.5	0.5	Speculation	Site is Remote and no potable water use is anticipated at the Site. (Phase II ESA)
2a. Site Score Based on Data 2a. Site Score Based on Speculation 2a. Site Score		3 0.5 3.5	·	· · · · · · · · · · · · · · · · · · ·
 b) Other water resources (max. 4). Complete i (Known) or ii (Potential) i) Water resources (i.e. recreational, commercial, livestock, irrigation or other food chain uses) known to be adversely affected as a result of site contamination (max. 4) 				
Known contamination of water resource (1) to concentrations above background and above the appropriate environmental quality criteria (EQC) as required based on the water resources usage or (2) there is physical evidence of water resources contamination	4			
Chemical concentrations are currently below the appropriate EQC as required based on the water resources usage but strongly suspect potential for future EQC exceedances	3			
Water resource is not known to be contaminated A2bi. Site Score	0	0		No impacts identified at the site. Therefore, the nearby Salt River is not known to be contaminated. (Phase II ESA)

100 to <300 m	
300 m to <1 km	
1 to 5 km	
	A2bii(Part1). Site Score

III. Receptors A. Human and Animal Uses (max. 18). Complete 1 (Known) or 2 (Potential), and Use of water resources (max. 2). If me automatically (use following table) Water Use	ultiple uses, give t		Scoring Guideline Occasional	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
Recreational (swimming, fishing, etc.)	•	2	1	030		
Commercial food preparation		1.5	0.8			
Livestock watering		1	0.5			
Irrigation		1	0.5			
Other domestic or food chain uses		0.5	0.3			
Not currently used but likely future use		0.5	0.2			
	A2	bii(Part2). Site Score)			
	2b. Site Score B	Score Based on Data ased on Speculation 2b. Site Score	ļ	0 0 0		
c) Direct human exposure (max. 5). Comp i) Known contamination of land used by Known contamination of land used for ag residential/parkland/school purposes (R/ Environmental Quality Criteria (EQC). Known contamination of land used for co above C/I CCME EQC.	y humans (max. 5) gricultural (AG) or P) above AG or R/F ommercial or industr	P CCME rial (C/I) purposes	5			The concentrations of the contaminants of concern were generally below the
Land is known not to be contaminated above background concentrations A2ci. Site Score		0	0	I	method detection limit. The concentrations of metals satisfied the applicable criteria. (Phase II ESA)	
ii) Potential human exposure through la case scenario; max. 5) Determine use(s) of land at and surround Land Use residential agricultural parkland/school commercial/industrial	ding site and assign Distar	est score to worst	table: 1-5 km 3 2.5 1.5 0.5			

III. Receptors A. Human and Animal Uses (max. 18). Complete 1 (Known) or 2 (Potential), and Special Considerations. 2c. Site Score Based on Data 2c. Site Score Based on Speculation 2c. Site Score	Scoring Guideline	Site Score 0 0 0 0	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
Special Considerations (max. 5)	-5 to +5	5		
Score Based on Data Score Based on Speculation Score from Special Considerations		3 0.5 0		
Total Site Score for Receptors/ Human and Animal Uses		3.5		

 III. Receptors B. Environmental Receptors (max. 16) Complete 1 (Known) or 2 (Potential), and Special Considerations. 1. Known impacts on the environment as a result of the contaminated site (max. 16) Known adverse effect on environmental receptors including fish habitat Visual physical evidence of stress on aquatic species or vegetative stress on trees, crops or plant life located on the site or off-site with impacts related to the contaminated site 	Scoring Guideline 16 12	Site Score	Information Source	Document relevant site information, the source of that information, and the rationale for selecting the site score.
No known environmental receptors within 1 km of contaminated site and no known adverse effects.	0			
B1. Site Score				
 2. Potential for Impact on Environmental Receptors. Complete a and b. a) Distance from the site to the nearest environmental receptor (max. 10) 0 to <300 m 300 m to <1 km 1 km to <5 km 	10 6 2			
>5 km B2a. Site Score	0.5	10	Data	The site is located within Wood Buffalo National Park, which is considered to be an environmental receptor. (Phase III ESA)
b) Distance to an important or susceptible groundwater or surface water resource (max. 6) 0 to <300 m 300 m to <1 km 1 km to <5 km >5 km	6 4 2 1	10	Data	
B2b. Site Score		6	Data	The Slave River is situated approximately 250 m east of the site. (Phase III ESA)
Special Considerations (max. 5)	-5 to +5			
Score Based on Data Score Based on Speculation Score from Special Considerations		16 0 0		
Total Site Score for Receptors/ Environmental Receptors		16		

Final Score Sheet

Factor Categories	دnown and Potential Scores Based on Data	Potential Scores Based on Speculation	Scores from Special Considerations	Total Category Scores
I. Contaminant Characteristics (max. 33)	16	0	-2	14
II. Exposure Pathways (max. 33)				
A. Groundwater (max. 11)	4.4	1.5	-2	3.9
B. Surface Water (max. 11)	7.3	0	0	7.3
C. Direct Contact (max. 11)	0	0	0	0
III. Receptors (max. 34)				
A. Human and Animal (max. 18)	3	0.5	0	3.5
B. Environment (max. 16)	16	0	0	16
Total Scores for the Si	te 46.7	2	-4	44.7

Site Classification Class 3 - Action May Be Required

Class 1 (Score 70 to 100): Action Required

Class 2 (Score 50 to 69.9): Action Likely Required

Class 3 (Score 37 to 49.9): Action May Be Required

Class N (Score <37): Action Not Likely Required

Class I (Speculation Score ≥15): Insufficient Information

Note: This worksheet can be copied for inclusion in site reports or other documents.