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EXECUTIVE SUMMARY

Remote cameras are a new technology that has the twin benefit of being a powerful tool for research
and for producing photographs of wildlife that enhance the public’s appreciation for nature. Remote
cameras are a non-invasive research and monitoring tool that offer a unique opportunity to collect data
on multiple species simultaneously and over large spatial scales. As a result, major biodiversity
monitoring programs around the globe are quickly adopting this technology. In the Canadian Mountain
National Parks, cameras provide essential information for the monitoring of Ecological Integrity. The
goal of this report is to evaluate data-collection methods and test the ability of remote cameras to
provide information to Parks Canada about the Canadian Rockies National Parks to help inform
management of many large mammals, including grizzly bears, wolverines, and lynx. This report presents
final results from contract #5P421 — 13 — 0001 between Parks Canada and University of Montana to
evaluate the effectiveness of the large-scale remote camera monitoring network among Banff, Jasper,
Yoho, Kootenay and Waterton Lakes National Parks. Within these five parks, 270 cameras are deployed
year round, and thus far, these efforts have collected ~10,000,000 pictures that have been classified into
~190,000 observation events. A collaboration of this scale requires hours of dedicated effort from many
resource conservation personnel.

This report demonstrates the ability of remote cameras to provide robust trend-monitoring data
for large-mammal species. For many species, monitoring trends in abundance may be prohibitively
expensive. For other species, for example, common ones, monitoring abundance may be unnecessary.
Remote camera trapping provides a means to monitor trends in the distribution, i.e., occupancy, of
multiple species simultaneously. By keeping track of sampled areas that are occupied by a species one
year, and not the next, trends in the spatial distribution of species can be monitored very effectively.
While ultimately, trends in population abundance may be the most important, monitoring population
trend may not be possible for many species. Moreover, there is a theoretical basis for a positive
relationship between abundance and occupancy, so if a population’s occupancy declines by 50%, it
might warrant additional monitoring to estimate the magnitude of decline in abundance. Despite the
differences between occupancy and abundance, increasingly more monitoring programs are using
trends in occupancy instead of abundance.

The capacity of the National Parks remote cameras to track trends in occupancy differed across
species and sampling designs. One key species we focused on was grizzly bears, a key-monitoring target
for Parks Canada management. Our results show that the ability to track trends in grizzly bears
distribution was very high. Using the established camera trapping design, Parks Canada has adequate
ability (80% statistical power) to detect a 4% decline in grizzly bear occupancy over any 2 sampling
periods. Our ability to track trends in grizzly bear occupancy improved with a higher numbers of
cameras, longer duration of deployment, and when expanding our scale of analysis to the regional scale.
When possible, parks should try to maintain at least 60 cameras, keep cameras deployed year round and
continue collaborative and coordinated analyses among National Park units. These three parameters —
number of cameras, sampling duration, and large scales — are key to maximizing the utility of these
cameras to monitor all species’ population trends. We also show that the ability to detect population
changes is not affected by the spatial pattern of occupancy decline or the estimation method, but is
affected by the species of interest. Remote cameras provide a powerful method to monitor rare species,
such as lynx and commonly detected species, such as grizzly bears. Some species, like wolverines, have a
very low detection probability, especially in summer. As a result, cameras need to be deployed during
winter to improve out ability to track changes in their population and camera data should be combined
with other data (e.g., snow-tracking data) where possible, to maximize detection probabilities. Other
very rare species, such as caribou, are restricted in their distribution and thus, require additional
monitoring efforts to effectively monitoring their population.
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The potential value of remote cameras expands beyond providing valuable public relations
media and tracking changes in population status of multiple species. For example, following initial
reintroduction and monitoring of bison to Banff National Park, cameras will offer a robust additional
method to document both bison expansion, and the responses of other wildlife species to bison
restoration. Remote cameras are also useful for estimating wolf density, which is an important metric
for understanding predator-prey relationships and caribou predation risk, and reproduction rates of
grizzly bears and potentially other species. Remote cameras can also be used to capture the emergence
of grizzly bears from their dens across entire parks and across many degrees of latitude to help
understand precise timing of den emergence. Over time, this information may help understand how
climate change affects grizzly bear emergence. Finally, remote cameras also offer a way to succinctly
document changes in the distribution and occupancy of multiple species. We end this report with an
outline of the theoretical foundation of how to development a camera-based metric of a multi-species
occupancy.

2014-05-11 4
Red Deer
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1.0 INTRODUCTION

1.1 Goals and motivations

1.1.1 Scope of report
In this report, we summarize the main findings of the Canadian Rockies Multi-Species Occupancy
Monitoring Project, a collaboration between Parks Canada and the University of Montana. The focus of
our research is 270 remote cameras currently placed throughout 5 Canadian national parks: Banff,
Jasper, Kootenay, Yoho, and Waterton Lakes National Parks, but we also use data from camera trapping
efforts in Kananaskis country courtesy of Alberta Parks, and the Ya Ha Tinda Ranch area collected by the
University of Montana. These data are used to help Parks Canada inform its remote camera monitoring
efforts to track trends in large mammal populations. We investigate many of the key design and
analytical considerations when using remote cameras for large-scale monitoring, drawing on the
scientific literature, and on 4 years of camera data collection across the 5 parks.
The specific objectives of the contract were to:
1. Develop an optimal sampling design to monitor carnivore trends.
a. Develop analytical methods for determining species occupancy and trends using remote
cameras.
b. Determine power to detect changes in species occupancy or density from a common
sampling design.
c. Determine the effects of trails, bear rub trees, animal communication trees, and lures
on species-specific probabilities of detection (completed 2012).
d. Recommend a common sampling design for implementation and testing across all

Mountain National Parks (competed 2012).
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2. Identify factors affecting fine and large scale distributions of grizzly bears, lynx, wolverine, and
emerging species (e.g. white-tailed deer). Determine how changes in occupancy of one species
will affect ecological processes and community composition.

3. Implement a study to examine the effects of sampling resolution, scale, home range size, and
density on occupancy estimates and trends (completed 2012).

We have met all objectives of Parks Canada contract #5P421-13-0001, dated July 18, 2012, and thus, this

is the final report under research and collection permit number BAN-2012-11113.

1.1.2 Motivations for remote camera trapping in the Canadian Rockies Mountain Parks

In the face of continued human development and climate change, wide-ranging species require large
tracks of suitable habitat to allow for change in species distributions (Parmesan and Yohe 2003, Thomas
et al. 2004). Large protected areas serve a key role, but are not immune to anthropogenic disturbances
such as climate change (Brashares 2010, Carroll 2010) or habitat alteration and direct mortality in
transport corridors (Benn and Herrero 2002, Chruszcz et al. 2003). Understanding the response of wide-
ranging species to human disturbance requires an understanding of abiotic interactions (Peterson et al.
2002) and multi-species interactions at large spatial scales (Post et al. 2009). A significant challenge in
understanding these
relationships is the
development of multi-species
monitoring capabilities across
broad spatial scales. National
Parks across the Canadian
Rockies have coordinated

remote cameras efforts to

standardize sampling strategies
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and analytical techniques to address these large-scale conservation issues using remote cameras.

Parks Canada is mandated to manage protected areas to allow visitation while maintaining
Ecological Integrity. Section 2 of the Canada National Parks Act defines Ecological Integrity as: “a
condition that is determined to be characteristic of its natural region and likely to persist, including
abiotic components and the composition and abundance of native species and biological communities,
rates of change and supporting processes” (Canada National Parks Act. S.C. 2000). The Parks Canada
website continues with this definition to explain in plain language that: “ecosystems have integrity when
they have their native components (plants, animals and other organisms) and processes (such as growth
and reproduction) intact”. Remote cameras offer a new method for monitoring at large-scales for both
these aspects of Ecological integrity: components and processes. For this reason, many Parks have
adopted this technology for monitoring in both backcountry and front country areas.

As an emerging technology, however, the effectiveness of remote cameras for monitoring
mammals at large spatial scales has been little tested. Many questions remain around the use of remote
cameras for monitoring. For instance, how large a population decline can cameras adequately measure?
How do measures of population status change with the number of cameras on the landscape or length
of time that cameras are deployed in the field? When moving to multiple species monitoring, how are
these considerations change across species? How do we combine population status across species to
develop a succinct multi-species metric? Such field, theoretical, and ecological questions motivate this
inclusive collaboration and the research in this report.

Remote cameras collect spatio-temporal data on the presence of multiple species. For species
that are individually recognizeable because of unique pelage or fur colors or patterns, such as Bengal
tigers, remote cameras can track individuals in space and time and estimate individual demographic
rates, abundance, and population trends through mark-recapture modeling. Most species in the

Canadian Rockies are not individually recognizable, however, and therefore camera data can only be

Page 5



designated to the species-level and not the individual required for abundance estimation. Instead, we
next explore the use of occupancy models for analyzing camera data and present alternative analytical

frameworks for the analysis of remote camera trapping data.

1.2 Occupancy models

Occupancy is defined as the “proportion of area occupied by a species or the fraction of landscape units
where the species is present” (MacKenzie et al. 2006, p.2). Occupancy, therefore, is a measure of a
species’ distribution. Occupancy models, as currently formulated, are hierarchical models that explicitly
model and correct for observer error (Mackenzie et al. 20020). In fact, without other known-fate kinds
of data such as from radio-telemetry, occupancy modeling allows for the only true measure of
distribution because it accounts for imperfect detection (Kéry et al. 2010). Just as any estimate of
abundance requires an adjustment for imperfect detection (Williams et al. 2002), so does any estimate

of distribution.

1.2.1 As metric for trend monitoring

Occupancy models provide a robust method for estimating species’ distributions and are likely the best
method for analyzing data collected under the remote camera sampling methods employed by Parks
Canada. Ecology is defined “the scientific study of the interactions that determine the distribution and
abundance of organisms”(Krebs 1994). Ecologists, by extension, are concerned with what, how and why
distributions and abundances change. Most management actions focus, however, on abundance and
less attention is given to distribution. The move to focusing more on distribution has gained a lot of
traction in the past decade for three main reasons. First, monitoring trends in abundance for many
species is prohibitively expensive. Second, many common species do not really require abundance to be
monitored, but managers would be alarmed in the event of a sudden decline in distribution or

abundance. Finally, in addition to these perennial challenges in monitoring, the recent development of
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occupancy models provides a rigorous statistical framework for monitoring changes in distribution or
occupancy (MacKenzie et al. 2002).

The use of occupancy as a state variable to monitor trends in populations has numerous
advocates (e.g.,MacKenzie and Nichols 2004, Noon et al. 2012). Some argue that using occupancy as a
metric for population status relies on an underlying assumption of a ~1:1 relationship between
occupancy and abundance (Stanley and Royle 2005). Although abundance-occupancy relationships are
always positive, abundance-occupancy relationships can take different non-linear forms (Gaston et al.
2000), making inferences to abundance less straight forward. Rather than a proxy for abundance,
however, occupancy itself can be used as a viable measure of population trend. In fact, COSEWIC uses
occupancy metrics, such as “area of occupancy” and “extent of occurrence” in 2 of the 5 criteria for
assessing the status of each species (COSEWIC 2011). These guidelines are adapted from the
international standard set by the International Union for Conservation of Nature (IUCN 2014).

Therefore, occupancy may provide a sufficient analytical end point for remote-camera data.

1.2.2 Status of occupancy analysis
Occupancy modeling has been championed for monitoring species that are rare or elusive, or when
estimating abundance is prohibitively expensive due to low recapture rates or low density of target
species (MacKenzie and Nichols 2004). Like all trend monitoring, large-scale population monitoring
should account for imperfect detection through repeated sampling (Pollock et al. 2002). Occupancy
modeling explicitly incorporates the detection process, correcting for this potential bias (MacKenzie et
al. 2006). Although promising, using occupancy modeling to detect trends in population status over time
has been rarely tested at large spatial scales in large mammal populations.

An assumption of occupancy models is that occupancy remains constant at each site during the
entire survey; this is referred to as the closure assumption. During amphibian surveys, for example,

where the occupancy of ponds is unlikely to change during a summer, this assumption is likely met. For
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camera data, however, it is rare for animals to remain in cells containing the camera for the entire
duration of camera data used in the analysis. A means to deal with this is violation of this closure
assumption is to refine the definition of the estimated parameter of occupancy as ‘use’ (MacKenzie
2005). Rather than considering some discrete habitat as occupied by at least one individual during the
survey, use is the probability that any individual uses a portion of the continuous landscape at one point
during the survey. Adhering to this closure assumption when cameras are placed at a spatial scale that
is smaller than an animal’s annual home range, would restrict the entire survey period for analysis to the
time it takes an animal to move from one cell to another (a matter of hours or days). Thus, the above
refinement of the occupancy definition allows for more data to be included in analysis to improving

estimate precision and still produces a metric that can be useful to managers (MacKenzie 2005).

2011-05-15 18:05:




1.3 Remote cameras

1.3.1 As a tool for multi-species monitoring

The need for conservation is increasing around the globe, but budgets for conservation and monitoring
remain tight, therefore, efficiency is needed to adequately monitor multiple species simultaneously
(Simberloff 1998). The use of occupancy modeling is one of the fastest growing areas of ecological
monitoring and has been proposed as a main conservation tool for many of the world’s endangered
species. To date, most camera-based occupancy studies have targeted one specific species, often a
charismatic carnivore, umbrella, or indicator species (Kucera and Barrett 2011) . Even when targeting a
specific species, remote cameras often collect far more pictures of non-target species, especially when
using a general attractant to increase detection probability, like placing cameras on trails. Due to the
indiscriminate way cameras collect data, they have a demonstrated capability to provide trend
monitoring for multiple species simultaneously. For example, Ahumada et al. (2013) used cameras to
monitor the population status of 13 mammal species in Costa Rica, ranging from jaguar (Panthera onca)
and cougar (Puma concolor) to Baird’s tapir (Tapirus bardii) and agouti (Dasyprocta puctata). A
collaboration called the Tropical Ecology Assessment and Monitoring Network (TEAM;
www.teamnetwork.org/) as been using these methods to monitor multiple species and biodiversity
across the tropics. This is the world’s largest camera trapping effort with 17 large camera arrays in 13
countries, all following identical standardized methods. Furthermore, data collected by TEAM is
incorporated into a camera-specific metric to monitoring biodiversity called the wildlife picture index
(O’Brien 2010, Ahumada et al. 2013). This index has great potential to provide Parks Canada with a

multi-species occupancy metric as well (Whittington et al. 2015).

1.3.2 Status of remote camera science
With recent advances in camera technology and statistical methods, reduction in cost, and increased

interest in remote camera photos as an outreach and education tool, the use of remote cameras has
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grown exponentially for the past 10-15 years, doubling every 2.9 years (O'Brien and Kinnaird 2008,
Rowcliffe and Carbone 2008, McCallum 2013, Burton et al. 2015). Remote cameras allow researchers to
overcome difficulties of studying rare and elusive animals over large spatial extents (O'Connell et al.
2011). The application of remote cameras in wildlife science are diverse. If studies are designed correctly
they can give information on diversity, reproduction, abundance, occupancy, community structure, and
information on animal behavioural, such as nest predation, co-occurrence, daily activity patterns, timing
of migration, etc. They are used, for example, to estimate carnivore abundance when species are
individually recognizable in a mark-recapture framework (Karanth and Nichols 1998), to inventory total
diversity (Tobler et al. 2008), and to study the level of sympatry between carnivores (Sollmann et al.
2012). The first evidence of wolverine expansion in California was documented by remote cameras set
for completely different purposes (Moriarty et al. 2009), demonstrating their utility to monitor species
range shifts as well.

Studies also now extend beyond the nuts and bolts mensuration of biodiversity components
(abundance, distribution, species richness) to applications that address underlying causes of biodiversity
change. For example, habitat loss and fragmentation are important drivers of biodiversity loss (Fahrig
2003). Remote cameras are an ideal tool to measure the effectiveness of highways overpasses to
improve multi-species landscape connectivity (Barrueto et al. 2014) and to evaluate the effects of forest
fragmentation on tropical species diversity and dominance (Ahumada et al. 2011). Different life stages
respond differently to disturbances; cameras have identified key areas where landscape structure leads
to higher reproductive success of grizzly bears (Fisher et al. 2014). Recently, remote camera researchers
are tackling more complex ecological interactions through the simultaneous measuring of important
drivers of animal behavior. For example, cameras were used to assess the impacts of both snow-pack
and wolf presence on elk occurrence (Brodie et al. 2014) and to measure plant phenology and climate

(Morisette et al. 2008). Cameras have even been used to determine how large-mammal food webs
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respond to logging in the forests of Borneo (Brodie and Giordano 2013). The potential of remote camera

data is vast; here we focus on the ability for cameras to track trends in population status.

1.3.3 Using occupancy for remote camera data

To monitor population status, remote camera data is often analyzed and presented in the literature in 4
main fashions: abundance, relative abundance, presence only and occupancy. Occupancy is defined as
the “proportion of area occupied by a species or the fraction of landscape units where the species is
present” (MacKenzie et al. 2006, p.2). Occupancy, therefore, is a measure of a species’ distribution,
where the measurement error due to a species’ elusiveness, their ecology, or observer error can be
explicitly accounted for to remove this negative bias. For this reason and other shortcomings of other
methods below, occupancy models are the most appropriate analytical framework for camera data.
Below, we briefly describe the feasibility of the 3 other groups of metrics and present some of the

advantages and limitations for each one.

1.3.4 Other analytical options

Absolute abundance

Monitoring organizations are often interested in metrics of abundance, which form the backbone of
endangered species legislation and the reporting requirements for many management agencies.
Cameras have been used for abundance estimation in a mark-resight (i.e. mark recapture) framework
(Karanth et al. 2006). These methods allow for the estimation of a total population based on the number
of animals seen (marked) and using information from these marked animals (detection histories) to
estimate the number of animals that were likely present but not observed (Williams et al. 2002). The
“marking”, however, requires individuals of the species to be uniquely identifiable. In classic mark-
recapture studies, individuals can be marked, for example, by using collars, tags or genetic markers. For

camera trap data, however, this is only possible for species with unique markings such as spots or strips.
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It is also possible to mark animals with radio collars and combine with remote cameras to estimate
abundance (Sollmann et al. 2013a). The only species present in the Mountain National Parks for which
an absolute abundance estimate have been performed without wide collaring, is wolverine; but this
required a special camera set up that was wolverine-specific to capture pictures of their chest markings
(Royle et al. 2011). Most species in the Canadian Rockies are not uniquely identifiable and therefore
cannot be used in a mark recapture analysis. Another analysis that allows for the estimation of
abundance from remote camera data is the Royle-Nichols model, which capitalizes on the increase in
detection probability with increased abundance (Royle and Nichols 2003). To date, however, there have
been few applications of this method to remote camera data because it is unclear how to scale up the
local abundances at camera sites to a study area scale (Sollmann et al. 2013b). Absolute abundance
metrics, therefore, seems unattainable with Canadian Rocky species and data-collection methods at this

time.

Relative abundance

Relative abundance indexes (RAIl) provide an index of abundance, where a change in the RAl may
correlate with a change in absolute abundance. Using remote camera data for an RAl has had many
early adopters (Carbone et al. 2001) and has been commonly used (e.g., Tobler et al. 2008). The most
common metric used is catch per unit effort (for example, pictures per 100 trap days). There are many
criticisms for using indexes in general (Pollock et al. 2002) and criticisms expand to indexes of remote-
camera data more specifically (Sollmann et al. 2013). The problem is that indexes are confounded with
detection probability such that a change in an index may mean a change in abundance but could also
indicate only a change in detection probability (due, for example, to a change in behavior). Because of
this bias, indexes should only be used for remote camera data when there is no way to account for
detection probability (O’Brien 2011). Occupancy modeling offers one way to deal with detection

probability in an analytical framework.
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Presence only

Another possible analysis of remote-camera data involves treating them as presence-only data. Camera
locations with at least one photo of a particular species confirm that it occurs at that specific location.
Many data sets, like museum records, do not contain any information about absences. MAXENT is
popular software developed to deal with presence-only data (Phillips et al. 2006). The biological
interpretation of its output has been alternatively viewed as occupancy, persistence, or an index of
habitat suitability. A thorough investigation into how this model works, however, shows that this
software relies on questionable assumptions, such as setting the occupancy probability of a species
under average conditions to 0.5, and data used in this software seldom meets other required
assumptions of the model, such as random or representative sampling, and constant detectability across
sites (Yackulic et al. 2013). It has been argued that the output can rarely be considered a measure of
occupancy and is rather a vaguely defined index of habitat suitability (Royle et al. 2012). This criticism
comes from the fact that the output of these models is confounded with observation error and site-
selection bias. The correct interpretation of their output, therefore, is the conditional probability of a
site being selected for sampling, of an animal being present at a site, and it being detected. If
assumptions of representative and random sampling, as well as equal detection probability are met,
then other analysis methods are possible for dealing with presence-only data (Royle et al. 2012);
however, with remote camera data equal detection probabilities across sites is very unlikely to occur.

Camera data should not, therefore, be analyzed as presence-only data.

1.4 Power analysis and research questions
As with any new monitoring program, prospective power analysis is essential to ensure the new method
can adequately detect meaningful changes in the population. Power analysis helps evaluate our ability

to detect trends over time given sampling intensity and an estimate of the variability in the estimators of
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interest (Steidl et al. 1997). Statistical power has been long recognized in ecology as equally important
as statistical significance (Gerrodette 1987, Peterman 1990). For monitoring questions, the null
hypothesis tested is that there is no trend or difference between parameter estimates obtained from
two or more sampling periods. Type | error, a, is the probability of falsely detecting a change (increase
of decline) in the population when no change has occurred (i.e. a false alarm; commission error). Type Il
error, B, is defined as the probability of falsely concluding a population is not changing, when in reality it
is changing (i.e. failing to detect a change; omission error). Power, 1 — B, represents the probability of
correctly rejecting a false null hypothesis, thus supporting the alternative hypothesis that a change in
the population has occurred (Sokal and Rohlf 1995). There is a trade off between these two errors, and
in the context of conservation, failing to detect a real decline of a threatened species can have much
graver consequences (increased extinction risk with long time lags for recovery) than a false alarm
(short-term financial cost; Dayton 1998, Field et al. 2004).

Power analysis frequently addresses the question of sufficient sample size to adequately detect
some difference. Occupancy analysis, however, requires repeat sampling, which creates a trade off
between the number of samples (i.e. locations sampled) and the number of repeat visits (Field et al.
2005, MacKenzie and Royle 2005, Bailey et al. 2007, Guillera-Arroita and Lahoz-Monfort 2012). When
using remote cameras, the number of samples is equal to the number of cameras sites collecting data,
and because data is collected continuously, how long cameras are deployed is analogous to the number
of repeat visits. Three applied questions pertaining to remote camera study design can be addressed
using power analysis.

1) First, at what spatial scale can a trend in occupancy be detected, i.e. at a park scale, or regional
scale?
2) Second, how many cameras are required to detect trends with sufficient power?

3) Third, how long do cameras need to be deployed?
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With a high number of cameras deployed, we hypothesize that statistical power to detect trends will be

high at the regional scale, but that smaller parks may not have adequate power. We hypothesize that

when monitoring a species with low daily detection probabilities like grizzly bears, cameras may need to

be deployed year-round.

Furthermore, using power analysis, we also address three other questions pertinent to camera-

based occupancy modeling.

1)

2)

3)

First, for occupancy, it is unknown how the distribution of a species like grizzly bears will change
when the population is declining. Through simulation, we investigate 4 different ways that grizzly
bear distribution could decline, each of which may affect our ability to detect trends.

Second, there is little published advice on how to discretize camera data to create capture histories
suitable for occupancy analysis. Power to detect trends can be maximized through well-thought-out
study designs to maximize detection probability (MacKenzie and Royle 2005) and to correctly
balance the number of repeat visits to each site with the total number of sites, depending on
available resources (Bailey et al. 2007, Guillera-Arroita and Lahoz-Monfort 2012). For remote
camera data, the number of repeat visits is flexible, as the data from cameras is continuous and
need to be discretized into equal-length sampling replicates (Hines et al. 2010). While a recent
approach developed a continuous time approach to address sampling (Guillera-Arroita et al. 2011,
Borchers et al. 2014), most researchers commonly discretize data into sampling replicate durations
of one day or one week with little or no explanation for the chosen length (Burton et al. 2015). We
address this by discretizing the data into multiple time windows and evaluate model performance.
Third, because of their crucial role in propagating populations forward, large carnivore monitoring
often focuses on adult females. Our main goal was to evaluate occupancy trend monitoring using all
photos of grizzly bears. We compare power to detect trends for members of a species, starting with

all grizzly bears and compare to power to detect trends in grizzly bear family groups.
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1.5 Scaling up to multi-species monitoring

1.5.1 Monitoring multiple species simultaneously

As mentioned above, cost-effective monitoring encourages monitoring multiple species simultaneously
and cameras offer a means to effectively accomplish this. Although all the above sampling
considerations may affect the power to detect trends in occupancy, power will also depend on which
species we are interested it. This difference among species will be driven by differences in species-
specific occupancy and detection probabilities and possibly by the home-range size of that species. Both
occupancy and detection probabilities influence our confidence in occupancy estimates, and thus effect
statistical power. Ideally, once understood, these sampling and species-specific considerations can be
incorporated into a program that effectively monitors multiple species and can succinctly summarize

their trends in a multiple-species metric.

1.5.2 Towards a multi-species occupancy metric

Ultimately, one of the goals of the camera trapping effort across the National Parks is to develop a
metric to track camera-based multi-species occupancy at a park scale. Occupancy models are ideal for
estimating species-richness indices because they account for imperfect detection. Species richness
estimates that do not corrected for imperfect detection, implicitly assume that detection probability (p)
is constant across species. They also assume that, for each species p is constant across space, regardless
of habitat (Kéry and Schmid 2004). Improvements to species richness estimation includes accounting
both for species-specific p that can vary across space, and for species never detected (Dorazio and Royle
2005). Furthermore, these models have been extended to include open community dynamics to allow
for temporary migration to and from the local community of species present (Kéry et al. 2009). Species-
richness methods that account for imperfect detection have been used, for example, to test the effects
of habitat fragmentation (Zipkin et al. 2009) and white-tailed hunting regulation (Zipkin et al. 2010) on

community composition.
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Currently, international efforts to develop multi-species occupancy metrics include a second
major endeavor, in addition to the general species-richness metric outlined above. For remote camera
monitoring projects, a camera-specific metric called the Wildlife Picture Index (WPI) has been developed
(O'Brien et al. 2010, O’Brien 2010). This WPI integrates the occupancies probabilities of each species at
all sites (using a geometric mean), which is then compared to the baseline WPI from the first year of
monitoring. WPI for year one is set to 1 and WPI in the following years represent deviations from this
baseline. WPI has been used to measure the status of a large-mammal communities in Mongolia over 3
years (Townsend et al. 2014) and in Costa Rica over 5 years (Ahumada et al. 2013). The main
disadvantage of using WPl compared to other metrics is that precision drops precipitously when
including species present in the study area but never detected on any camera (Tobler et al. 2015). This
problem, however, may be negligible in temperate areas that have lower diversity than the tropical
areas where many more species are never detected. Following the results from our analyses in this
report, we make recommendations on how to synthesis our recommendations to scale up occupancy
monitoring from single species, to multiple species, and finally to multiple species simultaneously.
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1.6 Specific objectives of this report

The objective laid out in Parks Canada contract #5P421-13-0001, dated July 18, 2012, were to develop
an optimal sampling design to monitor carnivore trends and to identify factors affecting fine and large
scale distributions of important species of concern (grizzly bears, wolverine and lynx) and of an emerging
species (white-tailed deer). We previously made study design recommendations (Steenweg et al. 2012)
that have been implemented by all 5 national parks to improve trend monitoring.

The specific objectives of the contract were to:

1. Develop an optimal sampling design to monitor carnivore trends.

a. Develop analytical methods for determining species occupancy and trends using remote
cameras.

b. Determine power to detect changes in species occupancy or density from a common
sampling design.

c. Determine the effects of trails, bear rub trees, animal communication trees, and lures
on species-specific probabilities of detection (completed 2012).

d. Recommend a common sampling design for implementation and testing across all
Mountain National Parks (competed 2012).

2. ldentify factors affecting fine and large scale distributions of grizzly bears, lynx, wolverine, and
emerging species (e.g. white-tailed deer). Determine how changes in occupancy of one species
will affect ecological processes and community composition.

3. Implement a study to examine the effects of sampling resolution, scale, home range size, and
density on occupancy estimates and trends (completed 2012).

All objectives of the contract under Parks Canada contract #5P421-13-0001 have been met. This is the

final report for this contract and under research and collection permit number BAN-2012-11113.
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2.0 METHODS

2.1 Study Area
Data collected for this project was collected by Parks Canada Resource Conservation personnel across
the entire area spanning over 4 degrees of latitude from the northern extent of Jasper National Park to
Waterton Lakes National Park in the south, encompassing 5 National parks, and adjacent provincial
lands in Alberta’s foothills, including a portion of Spray Lakes Provincial Park (Figure 1). Throughout the
study area, topography is extreme
(elevation: 1000 — 3800m) and the
weather is temperate with short, dry
summers and long, cold winters,
including 360 cm of annual snowfall
on average (Holland and Coen 1983).
Park sizes vary from 481 km” (WLNP)
to 10,878 km” (JNP), and also include
Banff (BNP; 6,641 km?) Yoho (YNP;
1,313 km?) and Kootenay (KNP; 1,406

km?) National Parks.
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Figure 1: Study area of the Canadian Rockies remote camera multi-species occupancy project across 5
national parks. Grid in represents 10x10 km cells and cameras location represent n = 183 cameras set up

systematically in 2012. Currently, sampling intensity has increased to n = 270 cameras.

2.2 Field methods

2.2.1 Camera deployment and sampling design

Deploying and servicing hundreds of remote cameras requires many long hours by resource

conservation personnel on the trail, moving by foot, ski, and horseback. Camera batteries last about 4 —

6 months, therefore, to keep camera operational year round, cameras are serviced approximately three

times per year. When changing batteries, data are downloaded, camera positioning is verified and
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obstructing vegetation is removed as necessary. Excessive leaf motion in front of cameras can vastly
increase the number of pictures that need to be classified (up to 1000x more pictures). Most camera
work is performed in conjunction with other Ecological Integrity monitoring, research, or maintenance
work. Some parks also capitalize on the availability of volunteers to help service the cameras, promoting
increased citizen scientist involvement in the national parks.

Initial camera deployment involves finding a
suitable site on human-use or wildlife trails. Ideal sites
are in an area that naturally funnels animal
movement due to topography and at a junction of
human and/or wildlife trails. Cameras are attached to
trees at about waist height pointed slightly
downwards. Camera models used were
predominantly covert motion-trigger cameras
(Reconyx Hyperfire and Rapidfire) with few visible
glow Silent-image cameras (Reconyx , Holmen,
Wisconsin). Cameras are set to take 5 pictures per

movement trigger with no delay between triggers.

Following recommendations by Steenweg et
al. (2012; Objective 1d), resource conservation personnel have placed cameras at a density of one
camera per 10x10-km cell (1/100 kmz) in YNP, KNP, BNP and northern JNP. We chose to sample at a
scale of 10x10 km cells because it creates a density that is logistically feasible given the large area of
each park, it ensures near-complete sampling of each park, and it provides more than one camera per
average grizzly bear home range (~520 km?, ~1405 km? for females and males respectively; Stevens and

Gibeau 2005). Because WLNP is a smaller park, however, it was feasible to intensify sampling to 1
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camera per 5x5-km cell. We distributed cameras across elevations ranging from 1013m to 2521m
(mean: 1645m). Within sampling cells, we maximized detection probability by selecting sites where
animals were like to travel based on topography, the confluence of wildlife trails, and grizzly bear rub
(wildlife communication) trees (Clapham et al. 2014). Most cameras operated year round, but a few
cameras were inactive during the middle of winter when they were covered by deep snow. Camera data
images were classified into species, sex and age classes using program Timelapse (Greenberg and Godin
2012). We also classified the number of humans and horse riders at each camera site. Unlike photos

animals, photos of humans are deleted following classification.
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2.3 Occupancy model building

To address Objective 1a, we used occupancy models to estimate the relationship between landscape
covariates and the probability of occupancy for multiple species in the study area (MacKenzie et al.
2002, MacKenzie et al. 2006). Occupancy is a site-level binary state (z) of whether or not a species is
present or absence from a site. If a site, patch, or cell (i) is occupied, z; = 1, and if it is unoccupied, z; = 0.
The probability of occupancy { (pronounced “psi”) describes the probability that a site i is occupied,
such that {; = Pr(z; = 1). When this stochastic process is realized at the level of the study area for n
spatially-indexed sites, the estimates of { can then be summarized to calculate the Proportion of Area
Occupied (PAO = },i~; Wi ) (Royle and Dorazio 2008). PAO can be used as an index of population trends
and status. Detection probability (p) is used to estimate the proportion of sites where species were
present but not detected. Detection probabilities can be added to occupancy models in a hierarchical
fashion, whereby p is contingent upon whether or not an individual was present to be detected (i.e. | =
1). To estimate detection probabilities, we need multiple sampling (e.g. over time). For example, if a site
were surveyed 4 times (or if camera data were split into 4 one-week intervals) then we can create
detection histories with Os and 1s for non-detections and detection, respectively. For example, if we
detected a grizzly bear at a camera at site / the 1°** and 3" week but not the 2" and 4™, the detection
history would be ‘1010’. The likelihood at site i would then be: (p;)(1—p;)(p:)(1-p;) where 1-p is the
probability of not detecting a grizzly bear. In words, this is the product of the probability the bear was
present, times the probability it was detected, times the probability it was not detected, times the
probability it was detected, times the probability it was not detected. This computation is
straightforward for all possible detection histories except for ‘0000’ that may indicate the bear was
present but never detected or not present. Therefore the likelihood for this detection history at site k
would be Yy [Tf=1(1 — px) + (1 —y). The product of all likelihoods calculated in this manner (one per

site) gives a model likelihood that can be maximized given data, through changes in parameters ¢ and p.
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Note that in these examples, p remained constant across sampling sessions but occupancy was allowed
to vary across sites; this methodology allows for different p across sessions and a constant ¢ across
sites. Covariates for both ) and p can also be added to the equation, and missing data can also be
accounted for easily (MacKenzie et al. 2002). For this report, we used the unmarked package in R to
model occupancy using this maximum likelihood approach (Fiske and Chandler 2015).

To build the best occupancy models for power analysis (Objectives 1b and 2), we focused on
grizzly bears and grizzly bear family groups. We restricted the data used to one camera per 10x10-km
cell: 183 cameras during summer 2012, (May 1 — Oct 15). For grizzly bears, this time period captures
1007 picture events, defined as separate photos of grizzly bears that were at least 5 minutes apart, and
which represents 96% of all grizzly bear photos for 2012. Data was first discretized into 1-week sampling
sessions, but various sampling-session replicate lengths were investigated (see next section). Landscape
covariates for occupancy models were then included for both detection and occupancy probabilities for
various ecological and design-based reasons.

Grizzly bear resource selection function (RSF) models in the Canadian Rockies have revealed that
bears select for areas of increased vegetation quality (NDVI), south-west facing aspects, closed forests
near streams, open herbaceous and open-forest areas including burns (Ciarniello et al. 2007, Nielsen et
al. 2009). At large spatial scales, regional-level occupancy in Alberta is driven by the avoidance of
agriculture. At a finer scale, Apps et al. (2004) found that grizzly occurrence was associated with rugged
terrain containing higher elevations, steeper slopes and landscape types of avalanche chutes, alpine
tundra, and burned forests. Bears were negatively associated with human access (i.e., increased road
distance from towns). Burned areas are important for bear foods (McLellan and Hovey 2001), especially
for promoting the growth of berries in BNP (Hamer and Herrero 1987). Grizzly bears show positive
selection for burned areas, both young and old (Apps et al. 2004, Milakovic et al. 2012).

To represent these relationships, we included site and GIS-based landscape covariates as
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predictors of detection and occupancy probabilities (see Appendix A for full description of landscape
covariates used). Animals respond to different landscape cues at different scales (Johnson 1980,
DeCesare et al. 2012). It was unknown at what scale the occurrence of bears will respond to landscape
features such as topography, vegetation, distance to human disturbance, etc. To examine the scale-
dependent effect of landscape covariates on grizzly occupancy, we used a moving-window algorithm to
aggregate GIS-based landscape features around each camera location at 4 scales. For the largest scale,
we used a radius of 12.6 km around the camera location, creating an area of 500 km?, corresponding to
the size of average female grizzly bear home ranges in BNP (~520 km2; Stevens and Gibeau 2005). The
middle scale was a radius of 5.6 km, creating an area of 100 km” approximating the sampling scale of
10x10-km cells. The second-smallest scale approximated a grizzly bear’s average daily movement in the
Rocky Mountains, using a 2.5-km radius (Apps et al. 2004). Finally, the smallest scale was the point
location of the camera site. Landscape covariates can also affect detection probability; for example, the
type of vegetation surrounding a camera site may affect how much food is available to bears or may
affect bear mobility. For details of all GIS variables we included in our analysis, please see Appendix A.
Cameras also capture human activity on these trails that may affect grizzly bear use of trails (Rogala et
al. 2011). We included the log-transformed total number of people and log-transformed total number of
horses captured at each camera site. We also included some site-specific features of camera sites as
covariates for detection probability: trail type, camera type, the presence of rub trees, and the presence
of a natural mineral lick (see Appendix A). All continuous covariates were scaled to their mean and 1
standard deviation to improve numerical optimization in unmarked.

Using a multi-step approach to model selection (Harrell et al. 1996), we first estimated univariate effects
of each covariate on detection probabilities (Kéry et al. 2010), assessing their model fit using AlCc
(Burnham and Anderson 2002). To avoid collinearity, we plotted significant covariates using paired plots,

contingency tables and boxplots to compare two continuous, two categorical, or one of each covariate
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type, respectively (Zuur et al. 2007). For continuous covariates, we used a Pearson correlation
coefficient cut off of 0.6 to remove collinear covariates. We then nested significant, non-collinear
covariates to develop our final model, examining changes to beta coefficients while nesting multiple
covariates on p and removing non-informative covariates in the final model (Arnold 2010). After refining
the detection portion of the model, we followed the same procedure for occupancy probability. To
check model fit, we used 1000 parametric bootstrap replicates on a Chi-squared statistic that is

appropriate for binary data (Fiske and Chandler 2015).

2.3.1 Discretizing continuous data

Occupancy models require repeated sampling to estimate and account for imperfect detection. Because
camera data is collected continuously, it must be discretized to fit the data requirements of occupancy
models. A method has been developed to avoid this step and use continuous time to estimate detection
probability (Guillera-Arroita et al. 2011). Although it has also been developed for occupancy data from
transects, it could be extended to camera trap data but has not been implemented in occupancy
analysis software (e.g. PRESENCE, unmarked, MARK), thus continuing to necessitate a manual
discretizing of camera data for many projects. When discretizing continuous data for occupancy models,

it has been recommended to use the smallest sampling window possible while considering the ecology
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of the species; this retains as much information in the data as possible (J. Andrew Royle, personal
communication). To investigate how best to discretize remote camera data w e used a 60-day subset of
the data (Jun 15 — Aug 13) because 60 days can easily be discretized into many different sampling-
replicate lengths (1-6, 10, 12, 15, 20 and 30 days). For each discretization of the same data set, we
estimated occupancy models with no covariates on occupancy or detection probabilities and compared
model performance and precision of parameter estimates. For each sampling replicate length, we also
calculated cumulative probability of detecting bears at least once during the survey (p*) where p* =1 -
(1-p)™k, and k is the number of sampling replicates and p is the sampling-replicate-specific detection

probability.

2.3.2 Effects of trail and camera type on detection probability

Site-specific camera placement may affect detection probabilities for multiple species. Detection
probabilities for 11 species were analyzed across different camera model types and different trail types.
Three Reconyx camera models were used: Hyperfire, Rapidfire and Silent Image, in increasing order of
model age. The most important advancement between model types is the inclusion of a covert Infrared
flash in the Hyperfire and Rapidfire models which have been hypothesized to cause fewer animals to be
startled when photos are taken, when compared to the regular white LED flash of the Silent Image
model (Gibeau and McTavish 2009). A startled response may cause some species to avoid known
camera locations in the future, creating a trap-shy bias (Wegge et al. 2004). Cameras were deployed on

3 different trail types as well: wildlife trails, human-use trails and road beds.

2.3.3 Effect of lure on detection probability

To address objective 3 in our contract, we deployed 12 cameras to sites on wildlife trails (i.e. off of
human-use trails). In Banff National Park and Spray Lakes Provincial Park. Half of these cameras
received lure upon deployment in early July and the other half received lure 6 weeks following

deployment. All cameras were revisited approximately 6 weeks after setup to remove lure from those

Page 27



Canadian Rockies Remote Camera Multi-Species Monitoring Project — Final Report

with lure, and add lure to those sites that did not have lure initially in a crossover experimental design.
Wooden shelters were created for the lure, to allow removal of lure from the site. Each off human-use
trail camera was paired with a previously deployed camera on a human-use trail for a total of n=24
cameras. To minimize the differences between cameras on and off trails, similar
elevation/aspect/habitat type for were used for off-trail cameras and the on-trail camera counterpart
and the same camera type. Each off-trail camera location was >2km from its on-trail camera partner to
avoid any spill-over effect of the lure. Each lured camera location was also >300m away from any
human-use trails for public safety reasons.

Using the null occupancy model, i.e., no
covariates for detection probability (p) or for
occupancy probability (psi), and using a sampling
session length of 1 week, we modeled p for 11
species: grizzly bear, wolf, lynx, cougar, black bear,
coyote, elk, moose, mule deer, white-tailed deer and
red fox. Results are presented for when cameras were
on human-use trails, off human use trails with lure,

and off human use trails without lure.

2.4 Power analysis

We used simulations to assess the effects of key aspects of study design on the power to detect trends
in occupancy to address objectives 1b and 2. We used our top occupancy model above to identify sites
occupied by grizzly bears. To estimate the total number of sites occupied we used 1000 parametric
bootstrap replications of the empirical Bayes method available in the function, ranef, in the

unmarked extension package. Essentially, this function estimates the posterior distributions of the
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latent variable (occupancy) at each site, which can be summed to estimate the total number of sites
occupied. We calculated both the mode and mean of this posterior distribution to obtain the empirical
best-unbiased predictors using the bup function in unmarked. The mode of the posterior distribution
is equivalent to using a 50% threshold to classify sites as likely occupied or not, and leads to slightly
lower estimate than the mean (Fiske and Chandler 2015). We used the more conservative output of this
top model, the mode, to simulate in a paired design, the power to detect a decline between two
sampling years: between 2012 and a subsequent, simulated year. The paired design is most appropriate
because camera locations do not move between years and thus, our two samples are not independent.
Power to detect trends was determined using a paired t-test design where the resulting
estimated site-specific occupancy probabilities from a simulated decline was compared to the site-
specific probabilities in 2012, with an a level of 0.05 (Thomas and Juanes 1996). The paired t-test is
appropriate because in our design, camera sites did not change between sampling years but animals
move sufficiently between years for the samples to be independent from one another. We consider
only 2 sampling years, rather than >2 years because the power to detect a trend between the first and
last years does not differ significantly from detecting a trend across all years (see Table 1 in Guillera-
Arroita and Lahoz-Monfort 2012). We ran 1000 simulations for each decline scenario. We calculated
power as the percentage of simulations where a significant difference was detected (Thomas and Juanes
1996). We used 80% power as our target threshold for study designs having adequate power (Gelman

and Hill 2006).

2.4.1 Effect of spatial extent, number of cameras and duration of camera deployment

To examine at what spatial extent a change in grizzly bear occupancy could be detected, we performed
these power analysis simulations across each park and for all parks combined. To answer the questions
pertaining to sample size required (Objective 1c), we also randomly varied the number of camera sites

from 20 — 120. To understand how long cameras needed to be deployed, we varied amount of data used
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for the simulations from 40 — 160 days, effectively simulating shorter lengths of time that cameras were

deployed in the field.

SHALE PASS

2.4.2 Effect of sampling design and estimation method

When cameras sites are chosen randomly across the landscape, the resulting occupancy estimate is
naturally representative of the population. For the current sampling design however, cameras were
spread out using a grid and locations within a grid cell depend on the best location on trails to maximize
detection probability. The full sampling of the parks (one camera in each cell) allows inference to be
made to the entire park. The locations of sites within cells, however, does not provide a random sample
of camera locations, but camera sites are kept in the same location each there, therefore providing
information on the changes in cell occupancy across years. With random location, we could use a Wald
test to document changes in occupancy among years ((Guillera-Arroita et al. 2011), but with cameras
located in the same locations year to year, we can use the more powerful paired t-test. Next, we
investigated the affect of using random versus fixed locations on power to detect trends by calculating

and comparing statistical power when using both a Wald’s test and a paired t-test to address objective
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1b Furthermore, many occupancy analyses are being performed using a Bayesian estimation method,
rather than the Maximum likelihood method we are using. We use both estimation frameworks to
calculate power using both the Wald'’s t-test and paired t-test to evaluate any possibly differences when

choosing different estimation methods.

2.4.3 Effect of spatial pattern of decline

It is difficult to know what decline would cause a species to become extirpated (Reed and Blaustein
1997), therefore, we simulated a range of biologically significant declines in absolute occupancy ranging
from 0.05 to 0.40. Starting with baseline occupancy of 2012, we simulated the decline in four different
spatial patterns (i.e. different ecological mechanisms). Firstly, we sampled a loss of occupied sites
randomly, whereby occupied sites were randomly chosen to be unoccupied during the simulated year of
sampling. Secondly, assuming ideal free distribution of bear occupancy (Beckmann and Berger 2003),
lower quality habitat cells were lost first (i.e. random cells with the lowest occupancy probabilities were
lost first). Third, because some of the best grizzly bear habitat is located in valley bottoms, close to roads
(Nielsen et al. 2006), it is possible that occupancy decline may be associated with an ecological trap
instead, thus cells at the higher end of occupancy probability were lost first. Lastly, global ranges tend to
decline from their periphery (Laliberte and Ripple 2004) which for our study area is the east side of the
parks (Festa-Bianchet and Kansas 2010). In this scenario, we simulated more eastern sites were more

likely to become unoccupied using the geographic coordinates of each camera site.

2.4.4 Effect of sampling scale

Most occupancy studies target one specific species, often a charismatic carnivore, umbrella, or indicator
species (Kucera and Barrett 2011). Sampling is tailored to maximize probability of detection and match
the scale of sampling to the within home-range scale of movements of the focal species. There have
been many advances in our understanding of species occurrence and density from such species-specific

studies (MacKenzie 2006) that maximize the power to detect trends in the focal species. However,
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remote cameras inadvertently collect much more data on non-target species than target species. This
“superfluous” data span the spectrum of species abundance and trophic levels. To understand one of
the complications of analyzing multispecies data (Objective 3), we using three nested sampling scales of
remote camera trapping at 5, 10 and 20km grid cells to investigate the effects of sampling scale on
multi-species occupancy. The three cell sizes correspond to home-range sizes for 3 focal carnivores in
the Canadian Rockies: grizzly bear, cougar and fox. The 5x5-km cells represent a more intensive
sampling than the 10x10 cells described above and approximates the home range scale of red fox, ~25
km?, (Knick 1990). By randomly sub sampling these 5x5-km cells, we reduce this data to 1 per 10x10-
km cell, approximating the home ranges of cougars (87-97 km? and 140-334 km?” for females and males
respectively, depending on the season (Ross and Jalkotzy 1992). Further sub- sampling to 1 camera per
20x20-km cell roughly corresponds to the smallest home range size of female grizzly bears in this area
(~520 km?, (Stevens and Gibeau 2005). We repeated this intensive sampling in 3 study areas (Figure 2).

Here we present preliminary results from only the Ya Ha Tinda area.
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Figure 2: Increased sampling intensity in 3 areas of the Canadian Rockies to investigate the effects
of sampling scale on occupancy estimation across different species. Three areas are Ya Ha Tinda
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area, Banff NP — Kananaskis Country, and Waterton Lakes NP (from top to bottom). Each has

cameras deployed at a scale of 1 per 5x5 km cell during 2013-2014, 2012 and 2012-2014
respectively.

2.4.5 Effects of species-specific occupancy (/) and detection (p) probabilities

Each species has its own detection probability and prevalence on the landscape (i.e. occupancy
probability). To investigate how differences in species-specific occupancy and detection probabilities will
affect power to detect trends in their occupancy, we calculated the ability of the current sampling
design to detect a decline with 80% power. Using a published closed-form formula for calculating power
to detect a decline between two sampling years (Guillera-Arroita and Lahoz-Monfort 2012), we
calculated power across all combinations of occupancy probability (0.1 — 0.9) and detection probability
(0.1 -0.9). Keeping the number of sites constant at n = 183 and the number of sessions constant at 26
weeks (i.e. half a year), we explore the relationship between power and both W and p. Using an alpha
level of 0.05, we document the minimum decline that can be detected with 80% power. Using data from
2012, we estimated W and p for 13 large mammal species. Using null models with no covariates, we
then plotted these species-specific parameters relative to one-another and relative to the simulated

power across all W and p.
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3.0 RESULTS AND DISCUSSION

3.1 Field consideration

Each year, resource conservation personnel have serviced 100s of cameras (Table 1), often while
conducting other fieldwork. This effort included the deployment of upward of 150 new camera locations
each year, as old camera locations are retired due to poor location or because the temporary research
project had finished. Together, the 5 national parks have classified over 180,000 events (Table 2). An
event is defined as a picture of a single or group of animals (or humans) that is at least 5min from a
previous picture of the same species, unless it is clear that they are different individuals due to
coloration, size, or other discernable features (e.g. antlers). Each event comprises of ~5 pictures because
cameras are set to take 5 pictures in rapid succession. For every picture of an animal, ~50 pictures of no
animal are taken due to vegetation triggering the motion sensor. This leads to the rough estimate that
resource conservation personnel have, thus far, gone through ~10 million pictures, about 2 million per
year on average.

Table 1: Total new camera sites deployed each by resource conservation personnel across 5 National
Parks. Note, in some years, the same cameras were set up at multiple locations.

New cameras deployed each year Total cameras
<2011 2011 2012 2013 2014 currently deployed

Jasper NP 31 44 74 29 1 89

Banff NP 35 31 99 72 21 76

Lake Louise (BNP) 11 8 23 2 5 37

Kootenay NP 12 6 14 0 0 17

Yoho NP 7 9 6 7 1 20

Waterton Lakes NP 68 7 13 0 0 31

TOTAL 164 105 229 110 28 270
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Table 2. Total events classified by resource conservation personnel each year for each park. Events are

pictures of animals (or groups of animals) at least 5 min apart.

<2010 2010 2011 2012 2013 Total
Jasper NP 13,909 3,922 5,771 11,267 8,723 43,592
Banff NP 8,286 12,633 10,145 32,207 15,719 78,990
Lake Louise (BNP) 590 528 890 2,214 2,736 6,958
Kootenay NP 1,793 396 1,931 2,645 621 7,386
Yoho NP 4,025 1,515 1,696 2,466 9,702
Waterton Lakes NP 2,405 665 10,488 15,841 9,019 38,418
TOTAL 26,983 22,169 30,740 65,870 39,284 185,046

3.1.1 Using lure

Grizzly bears had significantly higher detection probabilities with cameras set on human-use trails than

off human-use trails when no lure was used (Figure 3). The use of lure off trails, however, seems to

counteract this difference, possibly pulling grizzlies off of human-use trail to lesser-used wildlife trails to

investigate the lure scent. No other species showed significant differences among treatments, however,

off human-use trail cameras tended to show lower detection probabilities when no lure was used, as

would be expected. For 9 of the 11 species, human-use trail cameras tended to have higher detection

probabilities than off-trail lured
cameras (although differences are
non-significant). These results
suggest that the use of lure would
not improve detection
probabilities in the National Parks
because of the safety requirement
for lured cameras to be set off of

human-use trails.

Steenweg et al.
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Figure 3. Effect of using lure on detection probability for 11 large mammal species in the Canadian
Rockies (mean and 95% confidence intervals). Results are shown for 3 treatments: cameras set off
human-use trails with and without lure and cameras on human-use trails without lure (n=24).

3.1.2 Trail type

Trail type did not significantly affect detection probabilities across most species. The only significant
difference to note is that black bears were more likely to be detected on wildlife trails than on human-
use trails (Figure 4). Besides black bears and mule deer, it was interesting to note, however, that there
was a tendency for detection probabilities to be higher on human-use trails than on wildlife trails, or
for detection probabilities to be similar. Large confidence intervals for road bed camera sites were likley
due to small sample size (n = 6). Human-use trails, therefore, seem to have higher detection
probabilities for multiple species, with the exception of black bear and possibly mule deer. Note that
only sites where trailtype was known and was easily categorized as on a human-use trail (n = 43),0on a

wildlife trail (n = 17) or on a road bed (n = 6) were used. No sites that used lure were included in this

analysis.
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Figure 4. Effect of trail type on detection probability (mean and 95% confidence intervals) for 11 large
mammal species in the Canadian Rockies (n=66).

3.1.3 Camera type

Different camera models affected the detection probabilities for black bear and white-tailed deer, but
not for any other of the 9 species investigated (Figure 5). This suggests that older models such as Silent
Image cameras do provide reliable data despite features
such as a visible LED flash. Using only a short window of
data, this analysis did not account for how long cameras can
remain running in the field. Ultimately, battery life and
other field logistics concerns may still warrant prioritizing
using newer models, even if ecologically, the data

collected are of similar quality.
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Figure 5. Effect of camera type on detection probability (mean and 95% confidence intervals) for 11
large mammal species in the Canadian Rockies (n=106).

3.2 Occupancy models by species

We focused species-specific occupancy model development on grizzly bears, lynx, wolverine and white-
tailed deer. Grizzly bears are a species of specific management concern through the national parks.
Wolverine and lynx are rare species of interest for which little is know about their distributions and
whose population statuses are difficult to monitor (Whittington et al. 2014). White-tailed deer are an

expanding species that may have food-web-wide effects.

3.2.1 Grizzly bears

Grizzly bears were detected at least once at 129 of 183 camera sites, resulting in a naive occupancy
estimate of 0.70. Four landscape covariates helped explain grizzly bear occupancy and detection
probabilities in the top grizzly bear occupancy model (Table 3): the presence of rubtrees, distance from
roads, topographic position index and human activity levels on trails. Detection probability increased
when cameras were placed facing trees used by grizzly bears as rub trees. Detection probability was

higher on trails with low human activity levels (<1,000 people per summer) when compared to both
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trails with no human activity and high

U04 ol jap road

human activity, indicating that grizzly bears
used trails with lower human activity more
frequently. Essentially, trials with high
human activity had similar detection
probabilities that are not used by humans

and are likely lower quality trails for

movement, such as wildlife trails.
Detection probability also increased as camera sites were placed further from roads. Similarly,
occupancy probability also increased as distance from road increased. Furthermore, occupancy
decreased as cameras were placed in areas away from valleys bottoms and more towards mid-slopes
and ridges.

The best estimates of the number of occupied sites in the study area were 145 and 137 (mean,
mode respectively; C.l. of mean: 133 — 158) out of 183 sites. This is equivalent to a mean estimated
occupancy probability of 0.79 (0.73 — 0.86), and is a substantial increase from the naive occupancy of
0.70, corroborating the usefulness of occupancy models to account for imperfect detection. There was

no evidence for lack of model fit (p = 0.087).
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Table 3: Top occupancy models for grizzly bears (Ursus arctos) and grizzly bear family groups in the
Canadian Rockies using remote-camera-based-occupancy modeling with data from n = 183 cameras
deployed May 1 — Oct 15, 2012. Estimates of beta coefficients are reported for standardized covariates,
scaled to mean and standard deviation. Human activity level coefficients are relative to a level of no

human activity on trails.

All Grizzly bears Estimate  SE z
Occupancy 1.536 0.264 5.81
Distance to road 0.624 0.232 2.69
-0.693 0.230 -3.01
Detection -3.352 0.487 -6.88
Distance to road 0.260 0.090 2.90
0.318 0.100 3.18
Human activity level
1-1000 people 1.339 0.486 2.76
>1000 people 0.316 0.570 0.56
Family groups only
Occupancy -0.309 0.379 -0.82
Percent burnedsgom 0.696 0.325 2.15
Detection -3.905 0.252 -15.47
Distance to road 0.655 0.322 2.03

The top occupancy model for grizzly bear family groups also had good model fit (p = 0.099), but

contained fewer covariates than the top model for all grizzly bears (Table AB). Similar to all grizzly bears,

female detection probability increased with increasing distance to secondary road but was not

significantly affected by the presence of rub trees or high human traffic. Furthermore, variation in

occupancy of grizzly bear family groups was only explained by percent of area burned within 500km? of

the camera site.

Using the top model for grizzly bear occupancy, we analyzed the most current data classified for

all 5 parks, 2013 where n = 315 cameras were operational. The resulting occupancy map (Figure 6)

shows considerable increase in camera coverage compared to 2012. Grizzly bear occupancy remains

high for all 5 parks with lowest occupancy probabilities among cameras in large main valleys.
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Figure 6: Probability of grizzly bear occupancy across 5 National Parks. Camera data from 2013 was
analyzed using the top model occupancy model. When occupancy probability = 1 (black circles), grizzly
bears were detected at least once at that site. Green circles depict probability of occupancy despite
grizzly bears never having been detected.
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3.2.2 Wolverine

Wolverines were detected at least once at 32/356 sites in summer 2012 and at least once at 46/231
sites during winter 2012-2013 (Table 4). The difference in naive occupancy rate was double, from 0.09 to
0.20. Variables explaining detection and occupancy probabilities in the top occupancy models by season
were similar, with the covariates in the summer model reflecting a subset of the covariates in the winter
model (Table 5). In both seasons, wolverine detection probability was higher when cameras were placed
in front of bear rub trees. In winter, detection was also higher further from roads, on human trails when
compared to wildlife trails, and at lower annual human traffic levels. Occupancy rate depended in both
seasons on elevations. In summer, wolverine occupancy was higher at higher elevation. In winter,
wolverine occupancy was also higher at higher elevation, but they showed selection for mid elevations.
The distribution of wolverine occupancy does not seem to differ much between seasons (Figures 7 and
8). Despite similar top models and distribution, it is clear that cameras are better able to detect
wolverines during winter. The summer estimated occupancy rate of 0.26 (0.15 — 0.35) is much lower
than the winter rate 0.34 (0.26 — 0.43). For some species, like wolverine, developing occupancy models
for multiple seasons may highlight important ecological or sampling efficacy differences between

seasons.

Table 4. Differences in data availability and in estimates from top occupancy models for wolverine in
summer and winter. Naive occupancy is equivalent to total sites with at least one detection.

Summer Winter
Dates May - Oct 2012 Nov 2012 - Apr 2013
Total cameras running 356 231
Naive occupancy (rate) 32 (0.09) 46 (0.20)
Mean estimated occupancy (Cl) 0.26 (0.15-0.35) 0.34 (0.26 - 0.43)
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Table 5. Top occupancy models for wolverine (Gulo gulo) using data from cameras deployed summer
(May — Oct, 2012; n =356) and winter (Nov 2012 — Apr 2013; n = 231). Estimates of beta coefficients are
reported for standardized covariates, scaled to mean and standard deviation. Effect of wildlife trail is
relative to human-use trails and annual human traffic is total number of people using the trail

throughout the year.

Summer (n = 356) Covariate Estimate SE z Pr(>|z|)
Occupancy (Intercept) -1.363 0.303 -4.500 <0.001
Elevation 0.911 0.290 3.140 0.002
Detection (Intercept) -3.840 0.325 -11.820 <0.001
Rub tree 1.440 0.354 4.070 <0.001

Winter (n = 231)

Occupancy (Intercept) -0.749 0.219 -3.420 0.001
Elevation 4.658 2.336 1.990 0.046
Elevation2 -4.556 2.314 -1.970 0.049
Detection (Intercept) -2.908 0.318 -9.150  <0.001
Distance to road 1.150 0.449 2.560 0.010
Rub tree 0.524 0.246 2.130 0.033
Wildlife trail -2.928 1.064 -2.750 0.006
Annual human traffic <0.001 <0.001 -2.100 0.035

Steenweg et al.
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Figure 7. Probability of summer wolverine occupancy across 5 National Parks. Camera data from May -
Oct 2012 was analyzed to develop a top summer occupancy model. When occupancy probability = 1
(black circles), wolverines were detected at least once at that site. Green circles depict probability of
occupancy despite wolverines never having been detected.
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Figure 8. Probability of winter wolverine occupancy across 5 National Parks. Camera data from Nov 2012
— Apr 2013 was analyzed to develop a top winter occupancy model. When occupancy probability = 1
(black circles), wolverines were detected at least once at that site. Green circles depict probability of
occupancy despite wolverines never having been detected.
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3.2.3 Lynx

Lynx were detected at least once at 62/356 sites in summer 2012 and at least once at 24/231 sites
during winter 2012-2013 (Table 6). The difference in naive occupancy rate between summer and winter
is nearly half: from 0.17 in summer to 0.10 in winter. Variables explaining detection and occupancy
probabilities in the top occupancy models by season were similar, but there were much fewer covariates
on the winter model due to dew detections and low rate of occupancy (Table 7). In both seasons, lynx
detection probability was higher when cameras were placed in front of bear rub trees. In summer,
detection was also higher when sites were placed further from railroads but in valley bottoms compared
to ridges (as measured by TPI at the 500km” scale). In winter, occupancy rate depended only on
increased crown closure in the area with in 20km” of the camera site. In contrast, during summer lynx
occupancy was higher at higher elevation. In winter, lynx occupancy was higher at cameras on ridges
than in valley bottoms (Table 7). Compared to summer (Figure
9) the low number of detections in winter, is readily apparent
when plotted across the study area (Figure 10) and
emphasizes the need to combine data from remote cameras
with snow tracking to improve estimates of lynx occupancy
and provide the best means to monitor their population
trend (Whittington et al. 2014). Similar to wolverine, the
difference in apparent lynx distribution in summer and winter

also highlights the importance of developing occupancy

T

-
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Table 6. Differences in data availability and in estimates from top occupancy models for lynx in summer
and winter. Naive occupancy is equivalent to total number of sites with at least one detection.

Summer Winter
Dates May - Oct 2012 Nov 2012 - Apr 2013
Total cameras running 356 231
Naive occupancy (rate) 62 (0.17) 24 (0.10)

Mean estimated occupancy (Cl)

0.31 (0.24 - 0.38)

0.14 (0.08 — 0.18)

Table 7. Top occupancy models for lynx (Lynx canadensis) using data from cameras deployed summer
(May — Oct, 2012; n = 356) and winter (Nov 2012 — Apr 2013; n = 231). Estimates of beta coefficients are
reported for standardized covariates, scaled to mean and standard deviation. Subscripts are scale of
covariate (e.g., 500-km scale).

Summer (n = 356) Covariate Estimate SE z Pr(>|z|)
Occupancy (Intercept) -0.905 0.183 -4.950 <0.001
TPlsoo 0.686 0.231 2.970 0.003
Detection (Intercept) -2.851 0.204 -13.95 <0.001
Rub tree 0.740 0.201 3.68 <0.001
TPls00 -0.629 0.123 -5.12 <0.001
Distance to rail 1.160 0.426 2.72 0.006

Winter (n = 231)

Occupancy (Intercept) -1.986 0.255 -7.80 <0.001
Crown Closurey 0.664 0.248 2.68 0.007
Detection (Intercept) -2.580 0.264 -9.78 <0.001
Rub tree 0.695 0.312 2.23 0.026

2013-12-14 11:26:40 -4"c
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Figure 9. Probability of summer lynx occupancy across 5 National Parks. Camera data from May — Oct
2012 was analyzed to develop a top summer occupancy model. When occupancy probability = 1 (black
circles), lynx were detected at least once at that site. Green circles depict probability of occupancy
despite lynx never having been detected.
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Figure 10. Probability of winter lynx occupancy across 5 National Parks. Camera data from Nov 2012 —
Apr 2013 was analyzed to develop a top winter occupancy model. When occupancy probability = 1
(black circles), lynx were detected at least once at that site. Green circles depict probability of occupancy

despite lynx never having been detected.
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3.2.4 White-tailed deer

White-tailed deer were detected at least once in summer 2012 at 104/183 sites, resulting in a naive
occupancy rate of 0.57. For the occupancy model analysis, one site was dropped to meet assumptions of
categorical data and ensure all group-expected frequencies did not equal zero. White-tailed deer
occupancy depended on two variables (Table 8). Occupancy decreases with increasing elevation and was
higher in the south-most park (Waterton Lakes NP) relative to the 4 northern parks. In fact, all but one
camera in Waterton Lakes used in this analysis captured at least one picture of white-tailed deer.
Variability in detection probability was described by 4 covariates. Cameras that were placed closer to
roads had higher detection probability, as did cameras placed in valley bottom when compared to ridges
or mid slope at special scales of 20 km?. Trails with low human activity (1-1000 people in the summer)
had similar detection probabilities to trials with no human activity, but when activity was >1000 people,
detection probability decreased significantly. Interestingly, this is response is slightly different for
white-tailed deer than grizzly bears. Grizzly bears had lower detection probability on both trails with
high human activity and no human activity. Deer may use these latter trails, which are often wildlife
trails, as a means to avoid predators like grizzly bears that spend more time on main trails. Finally,
detection probability was higher in herbaceous areas when compared to closed-conifer forests, but
lower in open-confider, mixed-deciduous or shrub-dominated areas. Model fit was good (p = 0.287).
When accounting for imperfect detection, the top occupancy model estimated the total number of sites
occupied to be a mean of 115 (Cl: 103 — 129), which is equivalent to an occupancy rate of 0.63 (0.57 —

0.71).
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Table 8. Top occupancy models for white-tailed deer (Odocoileus virginianus) in the Canadian Rockies
using remote-camera-based-occupancy modeling with data from n = 183 cameras deployed May 1 — Oct
31, 2012. Estimates of beta coefficients are reported for standardized covariates, scaled to mean and
standard deviation. Human activity level coefficients are relative to a level of no human activity on trails.

Coefficients for landcover classes are relative to conifer-closed.

Covariate Estimate SE z Pr(>|z])
Occupancy (Intercept) 0.507 0.218 2.330 0.020
Elevation -1.188 0.233 -5.100 <0.001
Park location (WLNP) 2.166 0.880 2.460 0.014
Detection (Intercept) -1.111 0.376 -2.952 0.003
Distance to road -0.383 0.051 -7.442 <0.001
TPly0km 0.503 0.064 7.870 <0.001
Human activity level
1-1000 people -0.238 0.379 -0.627 0.531
>1000 people  -1.652 0.566 -2.918 0.004
Landcover
Conifer-open -1.111 0.376 -2.952 0.003
Deciduous-mixed -0.287 0.139 -2.061 0.039
Herbaceous 1.580 0.210 7.526 <0.001
Shrub -0.917 0.308 -2.977 0.003
Rock-barren 0.229 0.457 0.501 0.617

27 23:07:00 0°c
oneline fence
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Figure 11. Probability of white-tailed deer occupancy across 5 National Parks. Camera data from 2013
was analyzed using the top model occupancy model. When occupancy probability = 1 (black circles),
deer were detected at least once at that site. Green circles depict probability of occupancy despite deer
never having been detected.
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3.3 Power to detect declines

Remote-camera-based occupancy models have the potential to provide a robust method to meet goals
of large-scale monitoring for difficult-to-monitor populations of low density, wide-ranging carnivores
such as grizzly bears. This power depends on the spatial extent of interest, the number of cameras
deployed, how long cameras are deployed, species-specific occupancy and detection probabilities, and
some analytical considerations such as how data is discretized and choice of statistical test. We address

each of these effects in turn.

3.3.1 Effect of spatial extent of interest

At the regional spatial scale, power to detect trends in grizzly bear occupancy was high (Figure 12A).
Using the conventional 80% power as our target threshold for study designs having adequate power
(Gelman and Hill 2006), we have adequate power with 183 cameras to detect a ~“4% decline in grizzly
bear occupancy between two sampling years. At the park scale, statistical power is lower and variable
among parks. In Banff, Yoho and Kootenay National Parks (BYK), we can detect an ~7% decline (Figure
12B; n =94); in NP, we can detect an ~10% decline (Figure 12C; n = 64); and in WLNP we can detect an
~24% decline (Figure 12D; n = 25). These declines in power when considering the park scale, rather than
the regional scale, is due mostly to sample size, i.e., the number of cameras deployed in each park.
Occupancy is a spatial attribute; the more samples of space we have, the higher our power. Therefore,

with more cameras at the regional scale, we have higher power to detect trends in occupancy.
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Figure 12. Power to detect trends in remote-camera-based occupancy of grizzly bears (Ursus arctos)
across 5 National Parks; across the 3 reporting units of varying sizes: Banff Kootenay and Yoho National
Parks together (BYK; n = 94); Jasper National park (JNP; n = 64); Waterton Lakes National Park (WLNP; n
= 25). Dashed lines are at conventional cut off of 80% statistical power.

3.3.2 Effects of number of cameras and duration of deployment

Power to detect trends in grizzly bear population occupancy decreases when cameras are deployed for
fewer days and when fewer cameras are deployed (Figure 13). Many cameras studies only deploy
cameras for 1 or 2 months (Burton et al. 2015). We can see in Figure 13A, however, that with low daily
detection probabilities for grizzly bears, having camera deployed for a shorter than the entire 6-month
period of Mar — Oct, causes our power to detect declines to drop precipitously. Therefore, we
recommend continuing to deploy cameras year-round. When we rarefied the data and fewer cameras
were used in analysis, it is clear that power to detect declines decreases with fewer cameras. The

different in statistical power among parks when discussing the scale of interest above, is a direct result
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of the number of cameras in each park (i.e., of sample size). From Figure 13B, it appears that the gain in

statistical power is substantial when increasing the number of cameras, up until about 60 camera are

established. Above n = 60 cameras, the return of increased power for each camera invested declines.

We recommend that a sample size of 60 cameras would be ideal to maximize power to detect trends

using camera-based occupancy models. When helping design the global camera Tropical Ecology and

Assessment Monitoring network, Obrien (2010) came to this same conclusion, that 60 cameras provided

an ideal sample size for monitoring wide-range elusive species.
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Figure 13. Effects of the number of cameras (A) and the number of days that cameras are deployed in
the field (B), on power to detect trends in grizzly bear (Ursus arctos) occupancy in the Canadian Rockies.
Note that for subfigure B, n = 60 cameras.
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The relationship between power and the length of camera deployment can be understood when
the cumulative detection probability (p*) is considered. Cumulative detection probability is the
probability of detecting the species at least once during the entire sampling period. It is calculated as 1 —
the probability of missing the species during each of the individual sampling sessions (k) so that p* =1 —
(1- p)k. In Figure 14 we show the relationship of p* with number of days cameras are deployed when
daily detection probability is 0.04. Even with a very low detection probability, once the camera has been
deployed for 80-100 days, p* approaches 1, almost assuring the camera will capture at least one picture
of the species, if it is present. When designing non-invasive monitoring projects, it has recommended
elsewhere to extend survey duration until p* > 0.8 (Long and Zielinski 2008); keeping cameras out for

the entire time grizzly bears are active meets this recommendation.
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Figure 14. The relationship between cumulative detection probability (the probability of detecting a
species at least once) and the length of the survey. The longer the survey period, the closer p* comes to
1, even for low detection probabilities. The parameters for this graph are daily detection rate of 0.04; p*
is calculated using the equation represented.
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3.3.3 Effects of sampling design and analytical framework

Using a paired t-test, we had much higher power to detect declines in occupancy than when using a
Wald'’s test (Figure 15). Determining which test of significant difference to use depends on the sampling
design. The Wald’s test is calculated using the population-level occupancy (summed occupancy averaged
across all sites) and is only appropriate when the two samples are independent, for example, if we were
comparing occupancy estimates from two years of camera data that were collected from sites that were
randomly selected each year (e.g. Guillera-Arroita et al. 2011). The paired t-test is only appropriate
when sites do not change from year to year and occupancy can be attributed to specific sites to be
compared across two years. Not moving cameras, therefore, has a great advantage for detecting
declines because of the ability to use a paired t-test rather than a Wald’s test. Using this test is akin to
using a finite sample occupancy estimate, which reduces uncertainty in our parameter estimates
because at many of the sites we observed grizzly bears with no uncertainty (when pictures of grizzly
bears were taken). This distinction between population- and sample-level occupancy parameters is
seldom recognized, but has important implications for many occupancy studies (Royle and Dorazio
2008). On the other hand, there are minimal effects of using either maximum likelihood (Max Lik) or

Bayesian (MCMC) estimation methods on estimated power (Figure 15). Both methods provide similar

power graphs for grizzly bear
occupancy, but MCMC estimation
takes orders of magnitude more time.
When model structure is simple (i.e.
when looking at single species
occupancy) Maximum Likelihood

methods should suffice.
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Figure 15. Effect of using a different test of significant difference (Paired t-test vs Wald test) and the
effect of using different estimation frameworks (Maximum Likelihood, MaxLik vs Bayesian, mcmc) on
power to detect trends in grizzly bear populations across 5 national parks.
Using an occupancy model with no covariates to estimate occupancy and detection parameters, i.e., the
p(.)psi(.) model, provides similar estimates for occupancy than the top covariate model. With no
covariates the mean estimate for the number of the 183 sites occupied is 140 (Cl: 127 — 152), which is
equivalent to an occupancy rate of 0.77 (Cl: 0.69 — 0.83). These estimates are slightly lower and slightly
less precise when compared to results presented above using the top occupancy model with 4
covariates (Table AB) where the number of sites occupied was this 145 (Cl: 133 — 157) resulting in an
occupancy rate of 0.79 (Cl: 0.73 — 0.86). Despite the similarity in results, and the model with no

covariates no longer passes the basic Chi-squared test (p = 0.001), indicating evidence for lack of fit. The

use of covariates in occupancy models, therefore, improves precision and goodness of fit.
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3.3.4 Effect of considering grizzly family groups only

Grizzly bear family groups had lower occupancy (mean: 0.44, C.I. 0.29 — 0.66; mode: 0.28) when
compared to all grizzly bears, but interestingly, we generally had higher statistical power to detect
declines in grizzly bear family groups (Figure 16). For example, when using cameras from 3 national
parks (BYKNPs), we have adequate power to detect a 4% decline in the occupancy compared to 7%

when considering all grizzly bears (Figure 16).
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Figure 16. Power to detect trends in remote-camera-based occupancy grizzlybear family groups, across
the 3 reporting units of varying sizes: Banff, Kootenay and Yoho National Parks together (BYK; n = 94);
Jasper National park (JNP; n = 64); Waterton Lakes National Park (WLNP; n = 25). Dashed lines are at
conventional cut off of 80% statistical power. Note that it was not possible to simulate an absolute
occupancy decline below the baseline occupancy rate of grizzly bear family groups ( =0.24 -0.3,
depending on the park). Data for all grizzly bears is the same as presented in figure 3a.

Despite fewer detections of grizzly bear family groups (50 observation-level detections

compared to 528 for all grizzly bears), we had higher or similar statistical power to detect trends in their
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population. This may be related the nature of the binomial distribution of occupancy probability. The
variance of a binomial distribution is proportional to p(1 — p) and therefore largest at p = 0.5 and lowest
at both extremities, 0 and 1. The high power to detect trends in all grizzly bears and in grizzly bear family
groups, may be similar because their baseline occupancy rates used to model occupancy declines were
similar distances from
0.5; W =0.28 for grizzly
bear family groups
compared to 0.75 for
grizzly bears. Further
discussion of this topic
is presented in the
section below on the
effects of species-
specific detection and

occupancy probabilities

on power to detect trends.

3.3.5 Effect of spatial decline of pattern of decline

The spatial pattern with which occupied sites became unoccupied had no effect on power to detect
trends (Figure 17). Power to detect trends in grizzly bear occupancy remained constant across all
simulated mechanisms of how occupancy could decline. Therefore, regardless of the simulated spatial
pattern of occupancy decline, statistical power is constant. Although intuitively a non-interesting result,
this lack of effect indicates, however, that there is no evidence for covariance between our sampling

design and any particular mechanism of decline. In other words, this result speaks to the ability of the
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current sampling protocol to capture a decline in occupancy regardless of the spatial mechanism of

occupancy decline.
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Figure 17. Effect of four different simulated mechanisms of occupancy decline on the power to detect
trends in grizzly bear occupancy in the Canadian Rockies (n = 60 cameras).

3.3.6 Effect of sampling scale

Both the estimates of occupancy and their precision are affected by sampling scales (Figure 18 and Table
9). For grizzly bears, estimated occupancy at the smallest scale, the fox home range (HR) size, is slightly
higher in the Ya Ha Tinda region 0.86 (0.60 - 0.96) when compared to the 5 national parks of 0.79 (0.73 —
0.86), and precision is lower. As sampling scale increases to the cougar HR scale, occupancy appears to
increase and precision to improve, but rather, the estimation algorithm is no longer producing valid
estimates because of boundary issues; confidence intervals for binomial data cannot be confidently
estimated. This result continues when subsampled to the grizzly HR scale (where only 3 cameras are
running). Cougar estimates are very imprecise, even at the fox HR scale. The wide confidence intervals
are a direct result of low detection probability of 0.10 (0.03 - 0.31). At cougar and grizzly HR scales,

boundary issues become a problem once again. Fox, on the other had, retains reasonable estimates at
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both fox and cougar HR scales. This is likely because with an initial occupancy rate of 0.41 (0.26 - 0.59),
sub-sampling the data maintains occupancy at a rate far from boundary. In general, the loss of precision
as scale of sampling increased for all 3 species is a direct results of the decreasing sample size (n = 48
cameras at fox HR scale, n = 12 at cougar HR , n = 3 at grizzly HR scale). Therefore this preliminary
analysis highlights 3 important considerations when matching the scale of sampling to the HR scale.
First, just as our analysis above showed, precision in occupancy estimates, and therefore power to
detect trends, is largely affected by sample size (Figure 13). Future analyses will include n = 78 cameras
from Banff National Park and Kananaskis country as well as n = 26 cameras from Waterton Lakes NP.
Second, cougar occupancy shows the effect that low detection probability can have on occupancy
estimates. Third, fox occupancy shows the effect that different occupancy rates can have on occupancy
estimation. The next section explores the relationship between power/precision and species-specific

occupancy and detection rates.
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Figure 18. Effect of sampling scale on occupancy estimates across 3 species. Summer 2014 data from 48
cameras in the Ya Ha Tinda area were analyzed at 3 different home-range (HR) scales (x-axis) for 3
species (facets). Home ranges are approximated to be: fox HR = 25km?, cougar HR = 100 km?, and grizzly

bear HR = 400km?.

Table 9. Effect of sampling scale on occupancy estimates across 3 species. Summer 2014 data from 48
cameras in the Ya Ha Tinda area were analyzed at 3 different home-range (HR) scales (x-axis) for 3
species (facets). Home ranges are approximated to be: fox HR = 25km?, cougar HR = 100 km?, and grizzly

bear HR = 400km?.

Species

Occupancy Estimate

Detection probability

Scale of Analysis

Grizzly bear

Cougar

Red fox

0.86 (0.60 - 0.96)
0.98 (0.60 - 1.00)
1.00 (0.67 - 1.00)
0.79 (0.01 - 1.00)
0.98 (0.00 - 1.00)
0.00 (0.00 - 0.40)
0.41 (0.26 - 0.59)
0.43 (0.17 - 0.79)
0.02 (0.00 - 1.00)

0.43 (0.33 - 0.54)
0.44 (0.24 - 0.69)
0.61 (0.13 - 1.00)
0.10 (0.03 - 0.31)
0.08 (0.00 - 0.38)
0.00 (0.00 - 0.66)
0.47 (0.34 - 0.61)
0.48 (0.20 - 0.81)
0.06 (0.00 - 1.00)

Fox HR
Cougar HR
Grizzly HR

Fox HR
Cougar HR
Grizzly HR

Fox HR
Cougar HR
Grizzly HR
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3.3.7 Effects of species-specific occupancy (¥/) and detection (p) probabilities

As was evident in the multi-scale analysis above, species-specific occupancy and detection probabilities
can affect precision of occupancy estimates. Statistical power was largely driven by the precision of the
parameter of interest (here, ¥). Detection probability (p) also affects the precision of Y. Therefore, both
W and p affect our ability to detect trends in occupancy, and this effect changes across species. First
we investigated the differences in ¥ and p across species. Using summer 2012 data and a null model
with no covariates, i.e. the p(.)psi). model, both ¥ and p differed substantially by species. Occupancy
estimates ranged from 0.79 for grizzly bears to 0.04 for caribou (Figure 19 and Table 10). With the given
sampling design, therefore, grizzly bears are more widely distributed than other species captured on
camera. Common species, such as mule and white-tailed deer, elk and moose, were also widely
distributed with occupancy rates between 0.55 — 0.65 (Figure 19, Table 10). Wolf and black bears were
also widely distributed with occupacy rates of 0.68 and 0.58, respecitively. Species that are generally
less common and less commonly seen had much lower occupancy rates, e.g. cougar, wolverine, lynx, re
fox and coyote. As expected, detection probabilities also varied across species in a relatively similar
fashion as occupancy probabilities with more common species having higher detection rates. As noted in
the above section on discretizing camera data, detection probability increases when sampling session
replication length is widened (compare Figures 19 and 20; and see Table 10). This increase in detection
probability does not, however, have much effect on occupancy estimates, but does decrease precision
in occupancy estimates consistently across species. This lack of change is due to cumulative detection
(p*) remaining relatively constant (Table 10). This consistency in cumulative detection probability is true

for all species, except wolverine, which is the only species to have p* < 0.8 (Table 10).
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Figure 19. Summer occupancy and detection probabilities as a function of species across 5 Canadian
National Parks. Analysis based on data from n = 183 cameras from May 1 — Oct 31, 2012 and with no
covariates, i.e. p(.)psi(.) models. Note that detection probabilities depend on chosen replicate interval

length, here: 7-day intervals. Also note the break in the x-axis.
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Table 10. Effects of species-specific occupancy and detection probabilities on the minimum decline in

occupancy the current sampling design is able to detect with 80% power and n

183 cameras. Estimates

are based on null, psi(.)p(.), models. Summer 2012 Camera data was discretized into 26, 1-week sessions

and 6, 1-month sessions. Data from this table used to create Figures 19 and 20.
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Figure 21: A) Minimum decline in occupancy between two years that can be detected with 80% power (z
axis), as a function of detection (0.1 — 0.9) and occupancy probabilities (0.1 — 0.9). n = 183 cameras are
simulated with 26 weeks of deployment. Included on the bottom plane are analysis results from May —
Oct, 2012 camera data for 13 species. Subfigure B) is a reproduction of figure 19 with 3 species
highlighted to help orient the bottom plane of subfigure A. Each species intersects the plane at the
minimum decline that is possible to detect, given the species’ occupancy and detection probabilities.
The higher the intersection point on the plane, the lower the statistical power. Subfigure C) shows the
effect of reducing the number of cameras to n = 60; the plane of minimum declined detected, rises
across all values of W and p, reiterating the reduced power with fewer cameras.
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The minimum decline we can detect is a function of both species-specific occupancy and
detection probabilities (Figure 21). This relationship is driven largely by the variance in occupancy
estimates. Under imperfect detection, the variance of occupancy probability has two parts: the variance
of a binomial distribution and a correction for imperfect detection (MacKenzie and Royle 2005). When
p* approaches 1, the latter portion goes to 0. The half-cylindrical shape of the Figure 21, therefore,
results from the variance of binomial distribution because p* approaches 1 for all p > 0.2. Given n = 183
cameras and 26 1-week sampling replicates, power to detect trends depends solely on psi and does not
change with p. The increased ‘lip’ of the half cylinder when detection probability is low, in contrast,
indicates a decrease in power when p* is not close to 1. Most species detection probabilities are low,
thus power depends on both psi and p. Just as the grizzly bear analysis showed (Figure 13), decreasing
the number of cameras decreases the power to detect trends (Figure 21C). Note that despite the
increased minimum decline detected with 80% power, the shape remains the same (Figure 21C).

There is little consensus in the statistical literature about how to estimate precision of binomial
proportions near boundaries (e.g. Y near 0 or 1). A general statistical rule of thumb states that for
binomial data, the number of successes and the number of failures must each be at least 5 (Brown et al.
2001), others recommend at least 10 (Steve Kanters, Pers. Comm.). Note that caribou does not intersect
the power surface in figure 21. Across the 5 national parks, caribou have very low occupancy (¥ =
0.035), which is < 0.1 and may be an unreliable estimate. It is interesting that if the analysis were
restricted to cameras in Jasper, the only park where caribou are present, this would increase total
occupancy rate, but the number of cameras with caribou detections remains below 5. In a park with 60
cameras, species with occupancy rates of <5/60 or >55/60 (corresponding to ¢ < 0.083 and > 0.917,
respectively) will have erratic confidence integral estimations. Note that more cameras have been

added since 2012, increasing the likelihood that the assumptions of binomial analyses are met. These
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assumptions are important at both ends of the occupancy spectrum (0,1). Species that are too common
or too rare will have lower power because of the low confidence in these occupancy estimates.
Wolverines demonstrate the issues of low detection probability rather than low occupancy
probability. Wolverines intersect the surface at a much higher point that other species, indicating we
have lower power to detect changes in their occupancy. This lower power is due to a low detection
probability (0.06), which is < 0.1 and, therefore can cause estimate problems (as mentioned above).
Detecting trends in occupancy is still possible, but with lower power. Increasing the sample session

length to artificially increase detection probability to 0.17 does not improve power to detect trends

(compare Figures 22A and B), because cumulative detection probability does not increase (Table 10).
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Figure 22. The effect of using 1-month data rather than 1-week data on the power to detect trends in
occupancy of 13 large mammal species. Essentially, discretizing data into 1-month session replicate
lengths does not improve power, not even for species with low detection probabilities like wolverine.
3.4 Notes on the scope of inference for current camera design

Occupancy modeling moves interest from the number of individuals present to the number of sampling
units that are occupied (Royle and Nichols 2003). Sampling design considerations are important to
ensure sampled units are representative of the population of interest (Cochran 1977, Thompson 2012).
When using occupancy models, sampling design dictates the definition of occupancy being estimated.
When cameras are deployed for only one month, for example, the occupancy definition is defined for
that one month, which may be representative of the whole year, or may be a key month of interest (e.g.
during breeding or when an animal is easy to capture). Using the current sampling design, however, the
parameter we estimated (i.e. grizzly bear use at anytime during the year) clarifies the scope of inference
when compared to shorter camera-trapping projects. Given that cameras are located on trails, estimates
of occupancy are most relevant for species that use trails. The occupancy of smaller mammals that are

indifferent to trails, for example, may not well captured with remote cameras placed on trails. Finally,
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a systematic sampling design with one camera per cell provides a census of a study area and enables
inference to be made to the scale of the study area (e.g. an entire park). Most parks in this study were
able to place cameras in all cells that contained grizzly bear habitat (i.e. cells that are not mostly rock
and ice). For parks that cannot census their entire landscape, inferences are limited to the sampled
areas because of the non-random selection of cells. We recommend that for large study areas with
many more cells than cameras or logistical capacity, cells that receive cameras should be chosen

randomly to allow the area of inference to extend to the entire park.

3.5 Appropriate species for camera monitoring

We have shown that with the current remote-camera monitoring program, we have high statistical
power to detect declines in the distribution of sensitive species through using occupancy models. Power,
however, is dependent on the species-specific occupancy and detection probabilities and on other
design-based considerations such as the number of cameras, duration of camera deployment and scale
of interest. Given these considerations, we summarize the appropriateness of using camera-based
monitoring for 4 groups of species: commonly detected species, rare species, very rare species and

future expanding species.

3.5.1 Commonly detected species, e.g. grizzly bear

The current camera trapping monitoring has high statistical power to detect trends in the population
occupancy of commonly detected species, like grizzly bears, at both regional scales and park scales
where sufficient cameras are deployed (i.e. n > 60). The reasons for high power are 4 fold. Firstly, unlike
when using abundance as the state variable of interest for monitoring populations where the sample
size is equal to the number of animals, when using occupancy as the state variable of interest, the
number of cameras is equivalent to the sample size. With 270 cameras currently on the landscape, high

sample size contributes to the high power of this monitoring method. Secondly, the long deployment of
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cameras (year-round) provides sufficient sampling to increase cumulative detection probability (p*)
close to 1 (see section above on effects of number of cameras and duration of deployment). Thirdly,
high power to detect trends is also attributable to our field protocol of using the same locations for both
sampling years, allowing us to capitalize on the additional power of a paired t-test, rather than
performing a t-test or Wald’s test on population-level occupancy probabilities (e.g. Guillera-Arroita et al.
2011). Finally, the high power is also due to grizzly bear occupancy rate being far from 0.5, where power
is lowest (see Figures 21 and 22 above). Such high occupancy rates of 0.79 (0.73 — 0.86) allow the
current monitoring program to have higher power than for species with occupancy rates near 0.5.

Grizzly bears therefore appear well-suited for monitoring with remote cameras.
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3.5.2 Difficult-to-detect species, e.g. wolverine

Wolverines are rare across Alberta, although little is known about their conservation status. This
uncertainty is reflected in the designation of wolverines as “data deficient” by the province of Alberta
(Alberta Fish and Wildlife Division 2008). Methods to monitor wolverines are emerging, include the use
of baited sites to collect camera pictures and DNA (Fisher et al. 2013a) and snow tracking (Whittington
et al. 2014). Their rarity is also well captured by non-baited remote cameras across the study area with
low estimates of occupancy probability during both summer 0.26 (0.15 — 0.35) and winter 0.34 (0.26 —
0.43) (Table 4). However, lower occupancy rates can lead to higher power to detect changes in the
population. Species with lower occupancy rates generally intercept the plane of minimum decline we
are able to detect at low values, indicating high power (Figures 21 and 22). Wolverines are,
unfortunately, also difficult to detect which hampers our ability to detect declines in their population.
Whether looking at their weekly detection probability [0.06 (0.04 - 0.09); see Table 10] or monthly
detection probability [0.17 (0.10 - 0.28)], their low detection rate can cause power to detect declines in
the wolverine population to be lower than for many other species. There are three readily available
ways to increase detection probability. The first, is the use of bait or lure (e.g. Fisher et al. 2013b). This
method can also provide an estimate of abundance, but required continuous re-baiting and may not be
logistically sustainable (see discussion above on the use of lure). The second method to increase
detection probability, and thus power, is to increase the length of surveying, which increases cumulative
detection probability (p*). The multi-species analyses in Figures 19-22 and Table 10, in fact, were
performed only on summer 2012 data. Using data from the entire year should increase p* adequately
and emphasizes the importance of year-round monitoring for species that are difficult to detect. The
third method to increase detection probability would be to combine camera data with snow tracking
data as well (Whittington et al. 2014). Once detection probability is increased sufficiently, camera-

based occupancy monitoring will likely be a powerful means to track wolverine population status.
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3.5.3 Very rare species, e.g. caribou

Caribou are not widespread throughout the study area. Although present in Banff NP until 2009
(Hebblewhite et al. 2009), caribou are only extant in Jasper NP. As a result, their occupancy rate is very
low. When using summer 2012 data from the systematic grid design, caribou only have an occupancy
rate of 0.04 (Cl: 0.02 - 0.08; see Table 10). As a result, their overall occupancy is insufficient to
confidently evaluate the power to detect trends (Figure 21). Furthermore, cameras are placed most
often on trials, while caribou often spend much of their time in alpine areas with few well-defined trails.
As a result, additional monitoring methods may be needed to have sufficient power for trend
monitoring. Cameras do, however, capture other important ecological information in relation to
caribou conservation such as the occupancy of other ungulate species, predators such as wolves, and
community responses to human disturbance and fire. Cameras are place on trails can capture
movements of wolves on linear features to gain access to caribou habitat (Whittington et al. 2005,

Whittington et al. 2011).
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3.5.4 Future expanding species, e.g. bison

Occupancy models are ideally suited for monitoring species range changes (MacKenzie et al. 2006).
Bison will soon be reintroduced into the Panther region of Banff National Park. Initially, many bison will
be radio collared, but as the population grows, a smaller proportion of the population will be collared.
Remote cameras offer an excellent additional method to monitor bison expansion as their population
grows in the medium term. Camera-based occupancy models, therefore, may become the best way to
monitor the bison population in the future. Moreover, a key ecological question will be the effects of
bison restoration on other species; remote camera monitoring will allow evaluation of bison impacts on

the entire large mammal community over time.

4.0 FUTURE OPPORTUNITIES

4.1 Towards a multi-species occupancy metric

One of the ultimate outcomes of this research is to synthesize these findings and develop a
framework to monitoring multi-species occupancy across the national parks. Such metrics have been
developed for remote-camera and other multi-species data, but they remain in their infancy and future
research must evaluate them. Like any index, theoretical and applied research need to ensure indices
adequately track actual changes species diversity (Hayward et al. 2015). Based on the research
summarized in this report, we recommend the following approach to developing such a metric.

Given the broad similarities in methods among occupancy-based species richness indices, it is
appropriate to consider the index developed specifically for camera data, the Wildlife Picture Index
(O'Brien et al. 2010). The methods provided in Ahumada et al. (2013) appear to be well documented and
well suited for application to the data in the Parks Canada database. Rather than using an arbitrary
session length for discretizing camera data, however, our results show that the smallest sampling

replicate length window should be used to maximize precision of occupancy estimates for each species,
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and therefore, maximize precision of WPI
estimates. Furthermore, given the large

sample size, the inclusion of landscape

covariates or each species’ occupancy model
would also improve precision. Parks Canada
camera data has been classified for all
species, down to the size of many rodents
(e.g., pika, Ochotona princeps). When
considering which species to include in a
diversity index, species should be restricted to those that regularly use trails, rather than species that
merely provide incidental data (e.g. mountain goats, Oreamnos americanus). Furthermore, there should
be awareness that the inclusion of very rare species with very low occupancy rates (e.g. caribou), may
strongly affect estimate precision, especially when interested at the park scale. As presented above,
there is little consensus in the statistical literature about how to estimate precision of binomial
proportions near boundaries (e.g. P near 0 or 1). The general rule of thumb states that the number of
successes and the number of failures must be at least 5 (Brown et al. 2001). Therefore, in a park with 60

cameras, species with occupancy rates of <5/60 or >55/60 (corresponding to { < 0.083 and > 0.917,

Steenweg et al. Page 77



respectively) will have erratic confidence interval estimation. Such very rare species may decrease
precision in WPI measures unnecessarily when considering only the park scale.

Furthermore, methods should be explored to capitalize on additional cameras that are deployed
temporarily throughout each park. In the systematic sampling design, a 10x10 km grid was placed over
each park to spread out sampling and provide a more spatially balanced sampling design. In addition to
the core camera sites that are monitored annually, one per 10x10 cell, additional cameras are often
placed in each cell. These additional cameras are deployed for different monitoring objectives and often
for shorter periods of time. These additional cameras per cell could be combined in an additional
hierarchy to provide more information for occupancy estimation. When utilizing this data, however, the
unit of sampling changes from the camera sites, to the cell that contains the camera sites. Therefore,
tradeoffs need to be explored between the improvements in the precision of occupancy estimates and
the effects of changing the sampling unit.

Occupancy is defined as the “proportion of area occupied by a species or the fraction of
landscape units where the species is present” (MacKenzie et al. 2006, p.2). For discrete habitat, each
patch of habitat is considered a landscape unit (e.g. ponds in amphibian studies; MacKenzie et al. 2002).
If each landscape unit is sampled once, then each habitat patch can be considered a sampling unit.
When discretizing continuous habitat, however, things become more complicated (Efford and Dawson
2012). When sampling design is restricted to one camera per 10x10 km cell, the grid spreads out
cameras more effectively. The grid is removed from consideration, however, during trend analyses (as
presented in this report). The camera sites themselves are the units of analysis and the proportion of
sites occupied provides the index for the proportion of the park that is occupied by each species. When
adding replicate sites per cell, the cell becomes the sampling unit, rather than the site. This model
formulation should be explored to better utilize all data collected, both systematically and

intermittently.
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Lastly, preliminary results show that occupancy levels and the covariates affecting occupancy,
varies across seasons. To use data collected during the entire year, we recommend splitting data into
two ecologically-significant seasons, a common practice for temperate studies. Splitting the year into
summer and winter, 6-months each, would allow the variation in occupancy and detection probability
estimates caused by seasonal variation to be accounted for. Such multi-season multi-species occupancy

methods have recently been developed (Tobler et al. 2015).

4.2 Occupancy-abundance relationships

Using occupancy rather than abundance as a state variable to monitor trends in populations has
numerous advocates (e.g. MacKenzie and Nichols 2004, Noon et al. 2012). Some argue that using
occupancy as a metric for population status relies on an underlying assumption of a ~1:1 relationship
between occupancy and abundance (Stanley and Royle 2005). Although abundance-occupancy
relationships are always positive, abundance-occupancy relationships can take different non-linear
forms (Gaston et al. 2000), making inferences to abundance less straight forward. Rather than a proxy
for abundance, however, occupancy itself can be used as a viable measure of population trend. Range-
size, for example, can be the best predictor of extinction risk (Harris and Pimm 2008). COSEWIC and
IUCN uses the occupancy metrics “area of occupancy” and “extent of occurrence” in 2 of the 5 criteria
for assessing the threatened status of a species (Mace et al. 2008, COSEWIC 2012, IUCN 2012).
Therefore, occupancy may provide a sufficient analytical end point for remote-camera data. Many
properties of occupancy, however, remain relatively unexplored. The abundance-occupancy
relationship, for example, has captured a lot of attention of researchers (Gaston et al. 2000, He and
Gaston 2000). One example where the occupancy-abundance relationship has been well characterized is
for bobcat (Clare et al. 2015), but more research is needed to compare this relationship across species,

population trends, and different scientific methods.
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Current monitoring and research objectives within Parks Canada have the opportunity to
address this need. With bison reintroduction into Banff National Park imminent, high quality abundance
and ocucpancy data will be collected in the initial year of the program. Camera trapping will also
continue to occur in the region during this time. Both occupancy and abundance are expected to
increase during the first years following bison reintroduction, therefore the combination of remote
cameras, radio collars and close monitoring will provide the first golden opportunity to examine the
occupancy-abundance relationship for a large herbivore.

Grizzly bear abundance estimates are also in progress around the mountain parks. In the
Waterton Lakes NP and Southwestern Alberta, grizzly bear rub trees are currently being used to collect
hair for DNA-based mark recapture estimates starting in 2012 (A. Morehouse, Pers. Comm.). Banff
National Park is gearing up for a second round of DNA-based mark recapture (first round completed in
2008; Sawaya et al. 2012) for grizzly bears in the Bow Valley. Finally, sampling efforts will begin in
Southern Jasper to estimate grizzly bear abundance there are well, using similar methods (G. Stenhouse,
Pers. Comm.). These 3 projects will be completed in conjunction with ongoing camera trapping and will
provide key information into the occupancy-abundance relationship to relate estimates from remote

cameras to density.
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6.0 APPENDIX
Appendix A: Description of site and GIS-based landscape covariates used for grizzly bear
occupancy models
To develop occupancy models for each species, we included a suite of site and GIS-based covariates as
predictors for both occupancy and detection probabilities. They are loosely categorized into 3
categories: biotic, abiotic and anthropogenic covariates (Table Al.) For Normalized Difference
Vegetation Index (NDVI), we used maximum annual NDVI from year 2006. For human disturbance, we
included distance to nearest primary road (highways), distance to nearest secondary (or primary) road,
and distance to railroad. To model terrain ruggedness, we created a topographical position index (TPI)
using Land Facet Corridor Designer tools (Majka et al. 2007); this compares the terrain at a location to its
surrounding area at a specific spatial scale (see Methods in main text for 3 scales we used). Elevation,
slope and aspect were estimated from a 30m resolution Digital Elevation Model. We calculated slope
using the Spatial Analyst extension for ArcGIS 9.3. For proportion of area burned, we calculated the
proportion of the landscape that has burned in the last 115 years. We also included percent crown
closure and created a distance to streams covariate from a stream layer downloaded from GeoBase.ca.
To categorize vegetation across the study area, we modified the landcover classification created by
McDermid (2006) which used Landsat 5 Thematic Mapper (TM) and Landsat 7 TM sensors. We updated
and consolidate this classification into 7 categories: open-coniferous, closed-coniferous, mixed-
deciduous, herbaceous, shrubs, water, rock-barren following the rules in Table A2. All other raster
covariates were also at 30m resolution except NVDI (250m). Site-level covariates included the camera
model type used, whether a rubtree was present or not (Green and Mattson 2003), whether a natural
mineral lick was present or not.

The effects of human features on grizzly bear behavior is likely to dissipate with distance (Merrill

et al. 1999). All distance covariates were transformed with an exponential decay of the form 1 — e
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where d is the distance in kilometers and a is set to 2 (Apps et al. 2004, Whittington et al. 2011). As a
result, at very small distances from the feature, the effect of the feature is strong and then decays to 0
at far distances, becoming essentially negligible beyond 2 km. To remain consistent with how beta
coefficients for distance covariates are interpreted, we subtracted the transformed covariates from 1 to
inverse the covariates such that lower values are associated with short distances (Nielsen et al. 2009).

Table A1l. Site and GIS-based landscape covariates used for grizzly bear (Ursus arctos) remote-camera-
based occupancy models in the Canadian Rockies.

Covariate on | Covariate on
Biotic covariates occupancy detection
Proportion of area burned (at 3 scales) X
NDVI (average at 3 scales and site location) X
Crown closure (at 3 scales) X
Distance to stream X X
Presece of bear rub trees (binary: yes, no) X
Presence of a mineral lick (binary: yes, no) X
Land-cover type, 7 levels: open-coniferous X
closed-coniferous X
mixed-deciduous X
herbaceous X
shrubs X
water X
rock-barren X
Abiotic covariates
Elevation (and elevation2 for quadratic) X
Slope X
Aspect (eastness and northness) X
Topographic Position Index (TPI, at 3 scales) | X X
Anthropogenic covariates
Human activity on trails (from cameras) X X
Horse activity on trails (from cameras) X X
Distance to primary roads (major highways) | X X
Distance to secondary roads X X
Distance to Rail X X
Trail type (binary: human-use, wildlife) X
Camera model (3 different models) X
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Table A2. Method for updating and consolidating landscape covariate classifications

New classification Formula using pre-existing layers
(Previous landcovers “closed conifer” or “open conifer”) &
percent conifer > 60 & crown closure > 60 (i.e. based on Upland
conifer-closed Trees, Wetland Trees)
(Previous landcovers “closed conifer” or “open conifer”) &
conifer-open percent conifer > 60 & crown closure <= 60
(Previous landcovers “closed conifer” or “open conifer”) &
deciduous-mixed percent conifer <= 60
herb Previous landcovers “Upland Herbs” or “Wetland Herbs”
shrub >5% shrub cover; any moisture regime. Landcover=5
Previous landcover “water”, updated with water_polygons = 1 (for
water rivers Jasper and Banff)
rock-barren Previous landcovers “barren”, “snow-ice”, “cloud”, or “shadow”
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